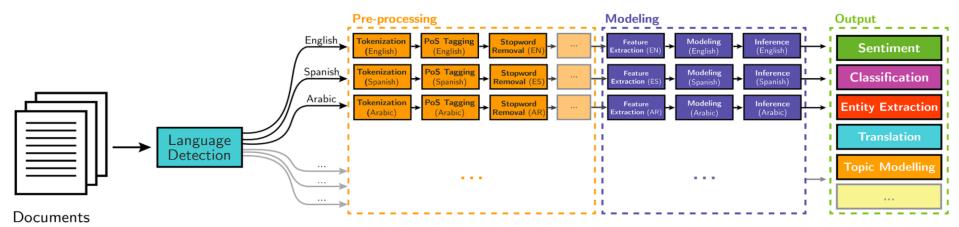
Scientific Text Mining and Knowledge Graphs

Meng Jiang and Jingbo Shang University of Notre Dame University of California, San Diego

mjiang2@nd.edu


jshang@ucsd.edu

Conclusions: from Unstructured Text to Knowledge

- Mining Structures from Massive Unstructured Text
 - Automated Phrase Mining (AutoPhrase)
 - Automated Entity Typing (AutoNER)
 - Automated Taxonomy Construction (NetTaxo)
- Unique Challenges and Tasks in Sciences
 - Conditions in scientific statements
 - Experimental evidence in tabular data
- □ The Path: Unstructured Texts \rightarrow Structures \rightarrow Knowledge

Future Work: Phrase Mining

- □ For popular languages with sufficient NLP tools
 - Incorporate more NLP features and structures
 - Incorporate contextualized representations to improve the accuracy
- □ For low-/zero- resource languages
 - Better unsupervised method

Future Work: Named Entity Recognition

- Improve the distant supervision
 - Can we do better than string match?
 - Can we integrate the phrase mining with NER and let them mutually enhance each other?
- □ Involve human experts in the loop
 - Given a fixed amount of expert hours, how to build the most reliable NER system?

Future Work: Knowledge Graph Learning

- Taxonomy improvement with dynamic user feedback
- Quality improvement
 - Denoising and cleaning
 - Completion
 - Typing and link prediction: Graph neural networks
 - □ Inference and reasoning: Reinforcement learning
- Application: Natural language generation
 - Conversational bots/dialogue systems
 - Question answering
 - Summarization

Topics

- Methods for extracting entities (methods, research topics, technologies, tasks, materials, metrics, research contributions) and relationships from research publications
- Methods for extracting **metadata** about authors, documents, datasets, grants, affiliations and others.
- Methods for quality assessment of scientific knowledge graphs
- Methods for the exploration, retrieval and visualization of scientific knowledge graphs
- Scientific claims identification from textual contents
- **Data models** (e.g., ontologies, vocabularies, schemas) for the description of scholarly data and the linking between scholarly data/software and academic papers that report or cite them

- Automatic or semi-automatic approaches to making sense of **research dynamics**
- Applications for the (semi-)automatic annotation of scholarly papers
- Description and use of provenance information of scholarly data
- **Theoretical models** describing the rhetorical and argumentative structure of scholarly papers and their application in practice
- **Novel user interfaces** for interaction with paper, metadata, content, software and data
- **Visualization** of related papers or data according to multiple dimensions (semantic similarity of abstracts, keywords, etc.)