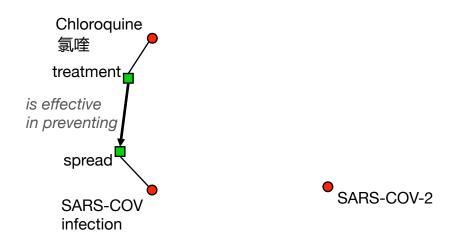
Scientific Text Mining and Knowledge Graphs

Chapter 2 Part 2: Knowledge Graph Learning

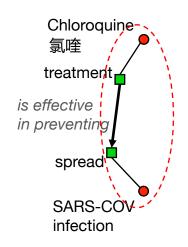
Presenter: Meng Jiang

University of Notre Dame

mjiang2@nd.edu

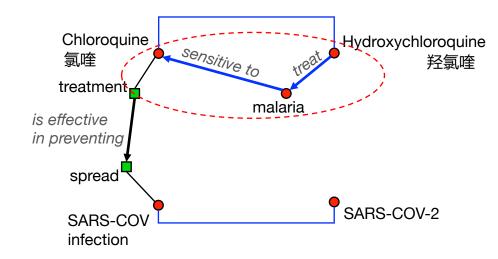

Roadmap

- Scientific KGs of COVID-19 literature
- Learning scientific KG for literature search
- Learning scientific KG for text generation


Roadmap

- Scientific KGs of COVID-19 literature
- Learning scientific KG for literature search
- Learning scientific KG for text generation

Motivating Examples

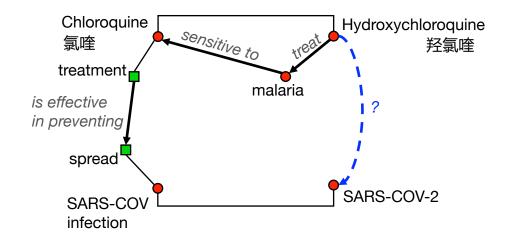

Vincent et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal.

SARS-COV-2

Vincent et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal.

"... The Chloroquine treatment is effective in preventing the spread of SARS-COV infection. ..."

Vincent et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal.

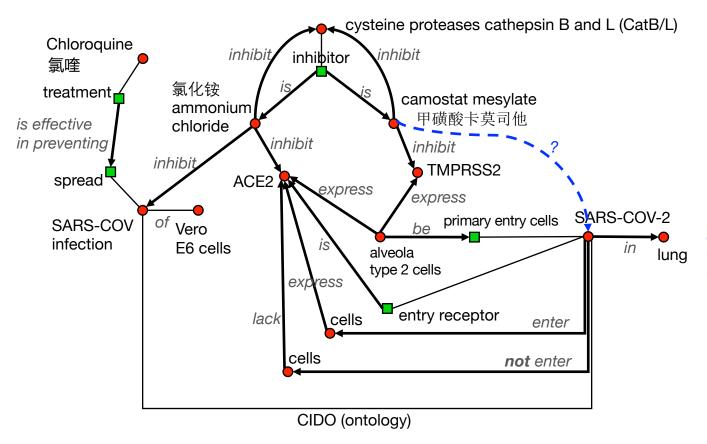

The Coronavirus Infectious Disease Ontology (CIDO). The OBO Foundry, Ontobee, and NCBO.

"... Hydroxychloroquine is a medication used to treat malaria in areas where malaria remains sensitive to chloroquine. ..."

[Wiki] [1]

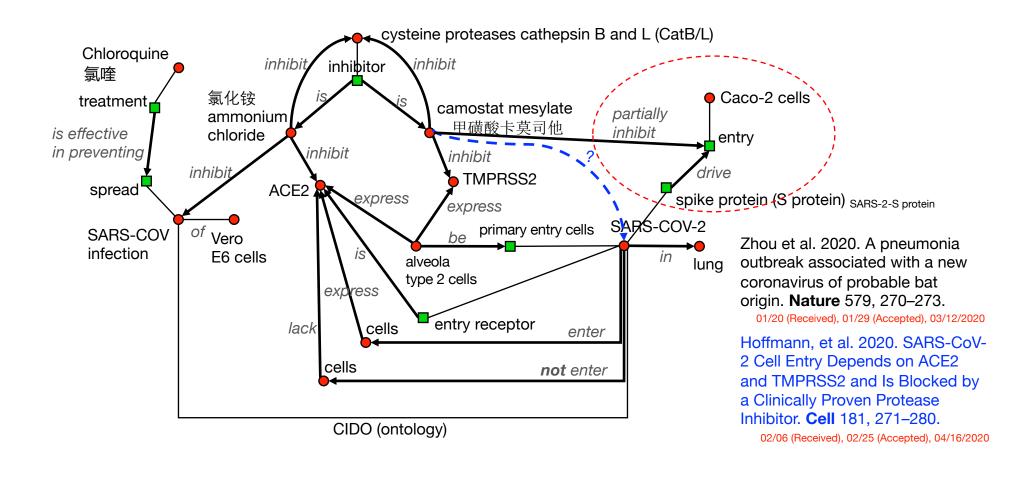
Tuples: (Hydroxychloroquine, *treat*, malaria)

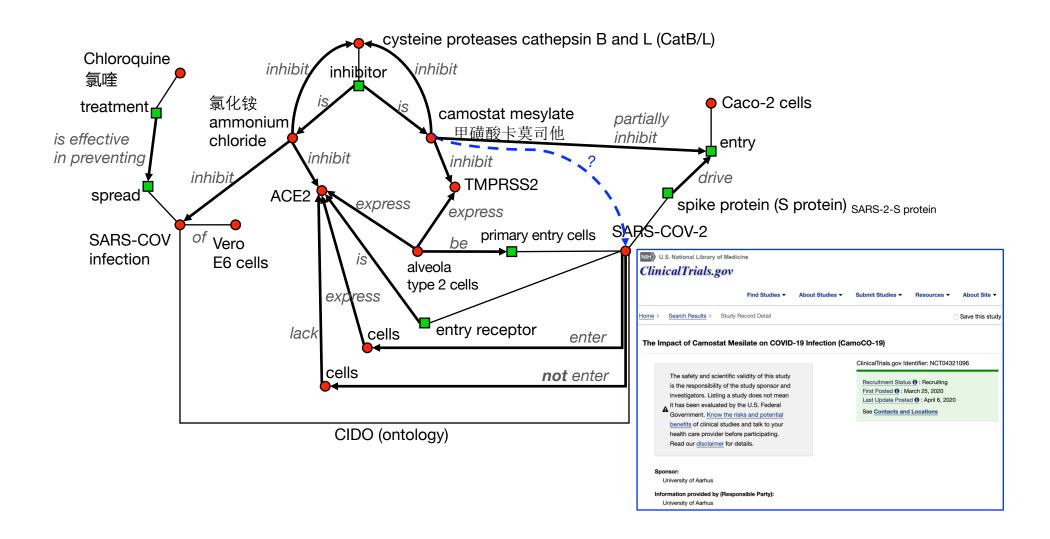
(malaria, remains_sensitive_to, chloroquine)

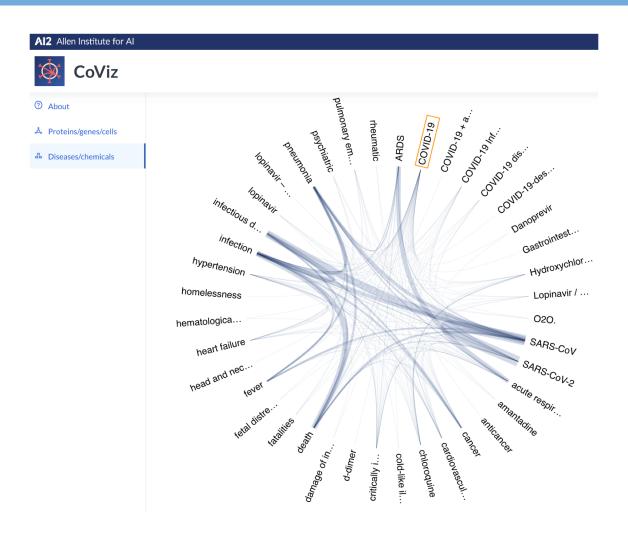

Vincent et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal.

The Coronavirus Infectious Disease Ontology (CIDO). The OBO Foundry, Ontobee, and NCBO.

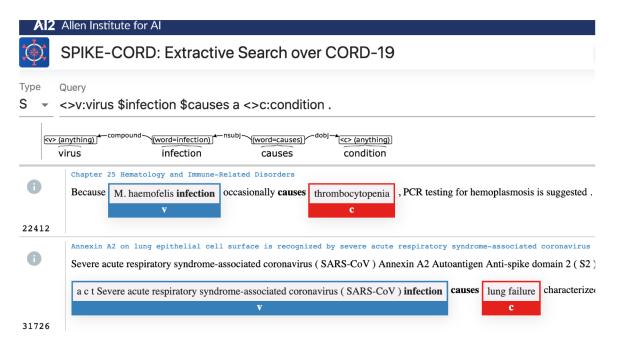
FDA Warns Against Using Drugs Promoted By Trump After Reports Of 'Poisoning And Death' [Forbes 04/24/2020]


https://www.forbes.com/sites/carlieporterfield/2020/04/24/fda-warns-against-using-drugs-promoted-by-trump-after-reports-of-poisoning-and-death




Zhou et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. **Nature** 579, 270–273.

01/20 (Received), 01/29 (Accepted), 03/12/2020

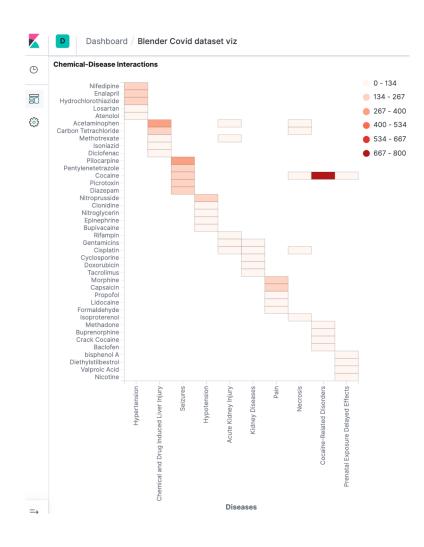


Knowledge Graph 1: CoViz by Al2

Knowledge Graph 2: SPIKE-CORD

based on **SciSpacy**: SpaCy models for biomedical text processing https://allenai.github.io/scispacy/

NER


COVID-19 AMINO ACID ANATOMICAL_SYSTEM CANCER CELLULAR COMPONENT CELL_LINE CELL TYPE CHEBI CHEMICAL CL COVID-19 DEVELOPING_ANATOMICAL_STRUCTURE DISEASE DNA ENTITY GENE_OR_GENE_PRODUCT GGP IMMATERIAL_ANATOMICAL_ENTITY MULTI-TISSUE STRUCTURE ORGAN ORGANISM ORGANISM_SUBDIVISION ORGANISM_SUBSTANCE PATHOLOGICAL FORMATION **PROTEIN** SIMPLE_CHEMICAL **TAXON** TISSUE

Relation

\$causes \$treats \$uses

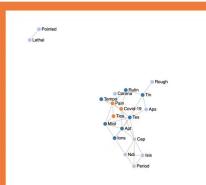
https://spike.covid-19.apps.allenai.org/search/covid19
https://spike.covid-19.apps.allenai.org/md/covid-usage-examples

Knowledge Graph 3: Blender Covid + SemViz@Brendeis

Resveratrol dorsomorphin Ethanol
Acetaminophen Doxorubicin
Lipopolysaccharides

Chemicals - Count

http://blender.cs.illinois.edu/covid19/?fbclid=lwAR2z0BcjDWScjuilCaWQD-YrdZvtlGGQh3LNjvDi4JzzwU6G1K9HD4owYWE


https://www.semviz.org/

 \triangle

Knowledge Graph 4: Weill Cornell

COVID-19 Literature Search Engine Relevant Articles Abstract: Background: Computed tomography (CT) is the preferred imaging method for di... Popular guestion. Authors: Jun Chen; Li... 2020-02-26 A serological assay to detect SARS-CoV-2 seroconversion in humans Abstract: Introduction: SARS-Cov-2 (severe acute respiratory disease coronavirus 2), whic... Authors: Fatima Ama... A mathematical model for the spatiotemporal epidemic spreading of COVID19 Abstract: An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COV... Authors: Alex Arenas:... 2020-03-23 ACE-2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID-19 Abstract: Introduction: Coronavirus disease 2019 (COVID-19) is a respiratory infection cau... Authors: Janice M Le.. 2020-03-23 The Effectiveness of Social Distancing in Mitigating COVID-19 Spread: a modelli Abstract: Background The novel coronavirus COVID19 has been classified by the World H... Authors: George J Mil... 2020-03-23 Copyright © Wang's Lab at Weill Cornell Medicine. Developer: Sendong Zhao, Yu Hou and Fei Wang

COVID-19 Literature Search Engine

A mathematical model for the spatiotemporal epidemic spreading of COVID19

2020-03-23

Alex Arenas; Wesley Cota; Jesus Gomez-Gardenes; Sergio Gómez; Clara Granell; Joan T. Matamalas; David Soriano-Panos; Benjamin Steinegger

Abstract: An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R 0 ~ 2.3. number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Microscopic Markov Chain Approach (MMCA) metapopulation mobility model to capture the spread of COVID-19. We propose a model that stratifies the population by ages. and account for the different incidences of the disease at each strata. The model is used to predict the incidence of the epidemics in a spatial population through time, permitting investigation of control measures. The model is applied to the current epidemic in Spain, using the estimates of the epidemiological parameters and the mobility and demographic census data of the national institute of statistics (INE). The results indicate that the peak of incidence will happen in the first half of April 2020 in absence of mobility restrictions. These results can be refined with improved estimates of epidemiological parameters, and can be adapted to precise mobility restrictions at the level of municipalities. The current estimates largely compromises the Spanish health capacity system, in particular that for intensive care units, from the end of March, However, the model allows for the scrutiny of containment measures that can be used for health authorities to forecast with accuracy their impact in prevalence of COVID-19. Here we show by testing different epidemic containment scenarios that we urge to enforce total lockdown to avoid a massive collapse of the Spanish national health

Recommended Principles

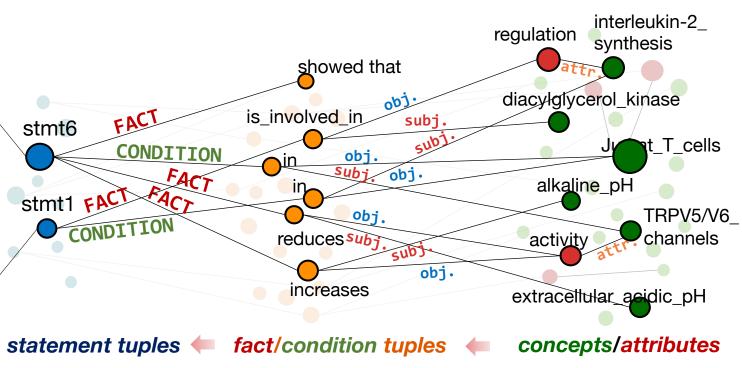
- P1: Relation-schema free: Open-domain IE with domain-specific pre-training?
- P2: Attribute-aware: Quintuple: ({Esubj:::Asubj}, R, {Eobj:::Aobj})
 - Entities and noun phrases (attributes, etc.) and verbal phrases (relation), etc.
- P3: Multi-tuple: One sentence can make multiple associated tuples
- P4: Graph-oriented: Discovering knowledge by link/path prediction

"We showed that extracellular acidic pH reduces the activity of TRPV5/V6 channels, whereas alkaline pH increases the activity of TRPV5/V6 channels in Jurkat T cells."

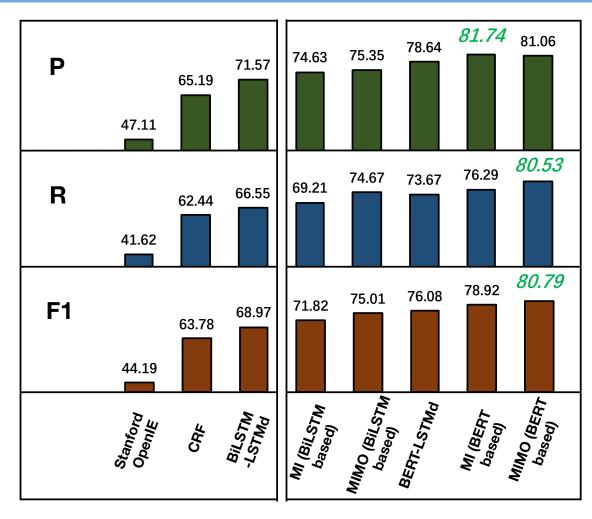
```
Fact tuple 1: (extracellular acidic pH, reduces, {TRPV5/V6 channels: activity}) Fact tuple 2: (alkaline pH, increases, {TRPV5/V6 channels: activity}) Condition tuple: (TRPV5/V6 channels, in, Jurkat T cells)
```

Roadmap

- Scientific KGs of COVID-19 literature
- Learning scientific KG for literature search
- Learning scientific KG for text generation

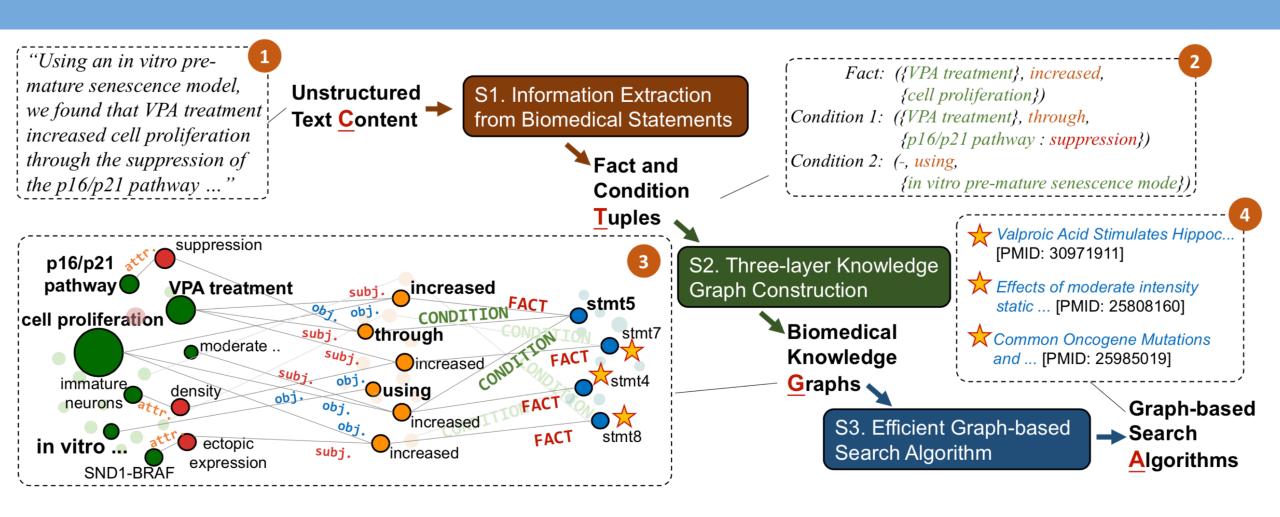

Three-Layered Scientific KG

```
activity of TRPV5/V6 channels, whereas alkaline pH increases the activity of TRPV5/V6 channels in Jurkat T cells.


fact 1: ( extracellular_acidic_pH, reduces, {TRPV5/V6_channels: activity} )
fact 2: (alkaline_pH, increases, {TRPV5/V6_channels: activity})
condition 1: ( TRPV5/V6_channels, in, Jurkat_T_cells )
```

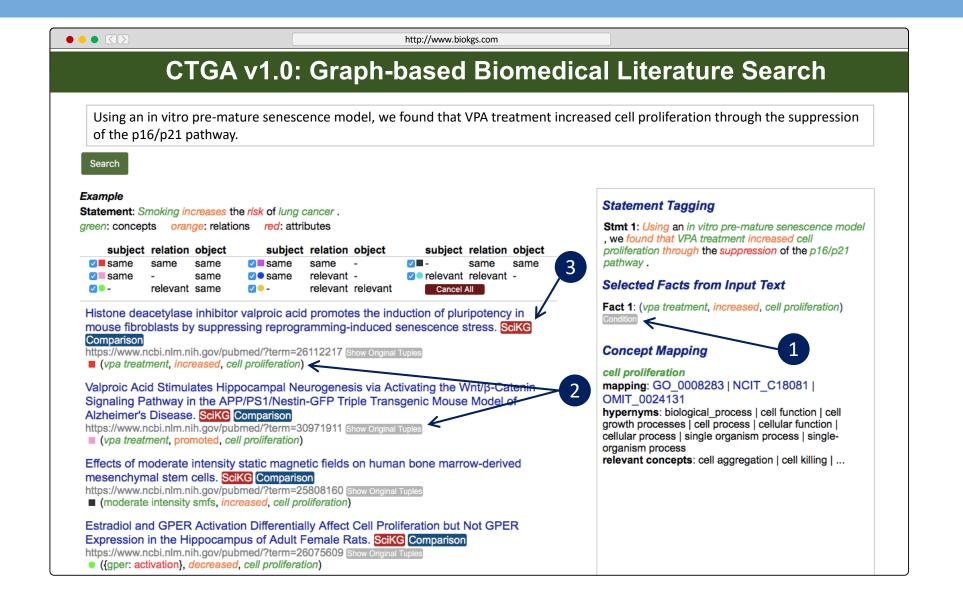
stmt6: We showed that extracellular acidic pH reduces the

stmt1: A diacylglycerol kinase is involved in the regulation of



MIMO: An Information Extraction Model

Jiang T, Zhao T, Qin B, Liu T, Chawla N, Jiang M. Multi-Input Multi-Output Sequence Labeling for Joint Extraction of Fact and Condition Tuples from Scientific Text. EMNLP 2019.


Novel Framework: CTGA

- Search and knowledge discovery
- Prediction and inference

- Hypothesis generation
- Hypothesis validation

A Demonstration System

Case Study

Query

VPA treatment increased cell proliferation.

CTGA

- Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway.
 (Knowledge: {VPA treatment, increase, cell proliferation}, {VPA treatment, inhibit, apoptosis})
- 2. VPA treatment promoted cell proliferation and increased the density of immature neurons in the dentate gyrus (DG) of the hippocampus of 3xTgAD mice. (Knowledge: {VPA treatment, promote, cell proliferation}, {VPA treatment, increase, density of immature neurons})
- 3. VPA treatment increased cathepsin B levels and activities in primary CLL cells. (Knowledge: {VPA treatment, increase, cathepsin B level})
- 4. Moderate intensity SMFs increased cell proliferation, ALP activity, and calcium release. (Knowledge: {Moderate intensity SMF, increase, cell proliferation})
- Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation (Knowledge: {Ectopic expression of SND1-BRAF, increase, cell proliferation})

PubMed

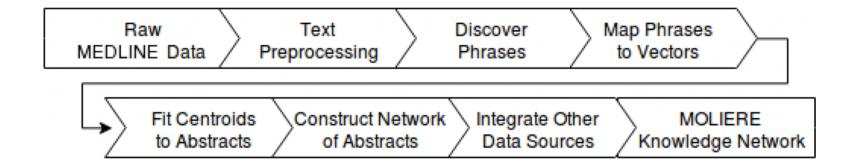
- 1. These results suggest that VPA increased type-1 stem cells in relation to the activation of SCF-KIT signaling and suppression of BTG2-mediated antiproliferative effect on stem cells.
- 2. Prostate cancer cells, sensitive and resistant to temsirolimus, were exposed to VPA, and tumor cell growth behavior compared.
- 3. VPA treatment promoted cell proliferation and increased the density of immature neurons in the dentate gyrus (DG) of the hippocampus of 3xTgAD mice.
- 4. Cell proliferation had increased to control levels at 30 and 45 d, demonstrating that memory recovery occurs over a period of six weeks after discontinuing VPA treatment.
- 5. To compare the protective effects of suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA) on human lens epithelial cells (HLECs) following ultraviolet-B exposure. ²¹

Results

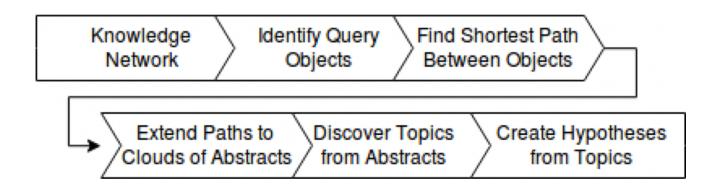
Search Engines	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE-L	SkipThought	Aver.Embedding	Top@5	Top@1	MRR
PubMed-FullText	17.22	7.01	4.43	3.37	16.34	75.56	68.54	88%	77%	81.5
CTGA-FullText	17.61	7.73	5.07	3.90	17.03	75.91	68.77	93%	92%	92.3
Improvement	2.3%↑	10.3%↑	14.4%↑	15.7%↑	4.2%↑	0.5%↑	0.3%↑	5.7%↑	19.5%↑	13.3%↑
PubMed-BestMatch	28.84	21.46	18.42	16.71	34.91	80.31	81.92	-	-	-
CTGA-BestMatch	32.60	24.67	21.06	18.84	38.26	81.77	82.80	-	-	-
Improvement	13.0%↑	15.0%↑	14.3%↑	12.7%↑	9.6%↑	1.8%↑	1.1%↑	-	-	-

Search Engines Ra	te@1 Ra	ite@3 Ra	ite@5 Pi	reference%	Kendall-Tau	SF-Dist	RBO	DCG	NDCG
			2.92 3.31	34% 66%	68.95 76.15	10.14 8.34	87.18 89.31	9.61 10.60	96.63 99.25

Roadmap


- Scientific KGs of COVID-19 literature
- Learning scientific KG for literature search
- Learning scientific KG for text generation

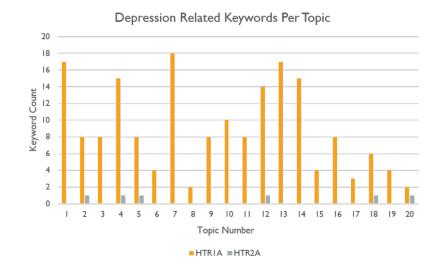
Three Interesting Works

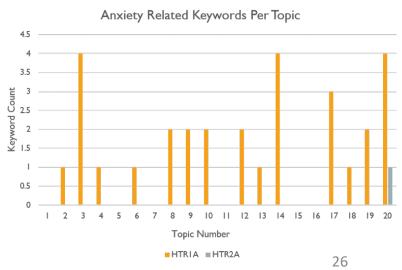

- MOLIERE: Automatic Biomedical Hypothesis Generation System (KDD'17)
- PaperRobot: Incremental Draft Generation of Scientific Ideas (ACL'19)
- Text Generation from Knowledge Graphs with Graph Transformers (NAACL'19)

MOLIERE: Automatic Biomedical Hypothesis Generation System (KDD'17)

Network construction:

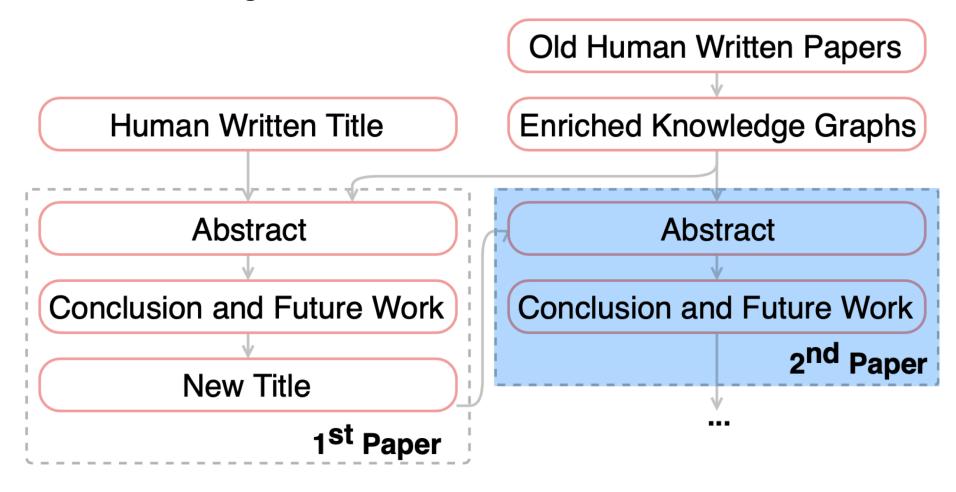
Query processing:

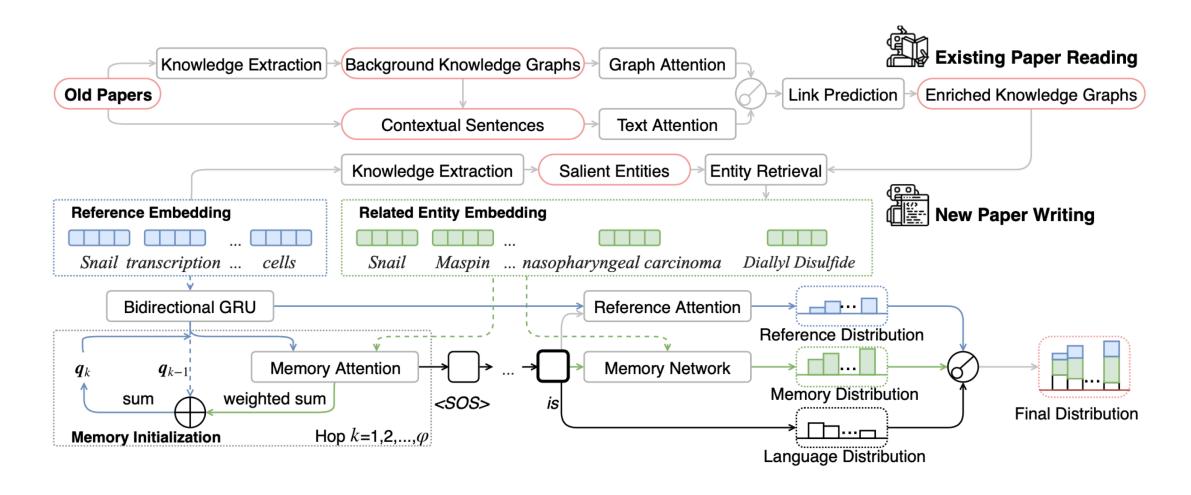



Results

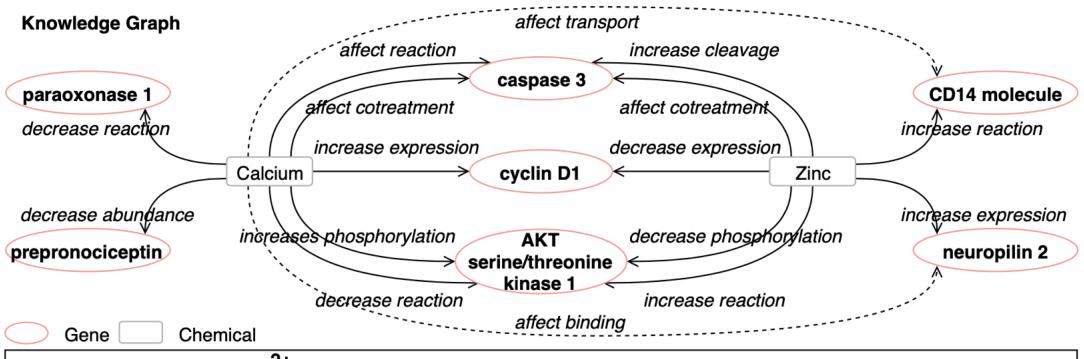
As a result of running two queries, Venlafaxine to HTR1A, and Venlafaxine to HTR2A, we can corroborate the findings of Wang et al. in [49]. We find that neither pair of keywords is directly connected or connected through a single abstract. Nevertheless, **phrases such as "long term antidepressant treatment," "action antidepressants," and "antidepressant drugs" are all prominent keywords in the HTR1A query.** Meanwhile, the string "depress" only occurs four times in unrelated phrases with the HTR2A results. The distribution of depression related keywords from both queries can be see in figure 5.

Similarly, our results for HTR1A contain a single topic holding the phrases "anxiogenic," "anxiety disorders," "depression anxiety disorders," and "anxiolytic response." In contrast, our HTR2A results do not contain any phrases related to anxiety. The distribution of anxiety related keywords from both queries can be see in figure 6.


Our findings agree with those of Wang et al. which were that a small association score of 0.34 between Venlafaxine and HTR1A indicates a connection which is likely related to depressive disorder and anxiety. The association score between Venlafaxine and HTR2A, in contrast, is a much higher 4.0. This indicates that the connection between these two keywords is much weaker.



PaperRobot: Incremental Draft Generation of Scientific Ideas (ACL'19)


Incremental writing

Architecture Overview

Biomedical Knowledge Extraction and Link Prediction

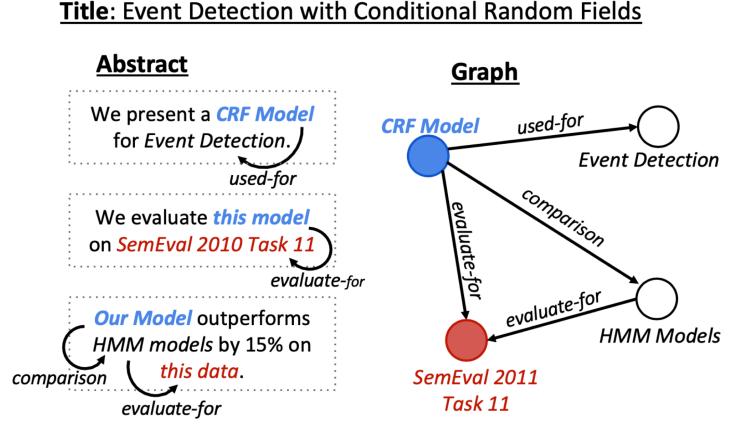
Contextual Sentence: So, Ca²⁺possibly *promoted* caspases activation upstream of *cytochrome c* release, but inactivated caspase activity by calpain and/or fast depletion of ATP; whereas Zn²⁺ blocked the *activation ofprocaspase-3* with no visible change in the level of **cytochrome c**, and the block possibly resulted from its direct inhibition on **caspase-3** enzyme.

Results

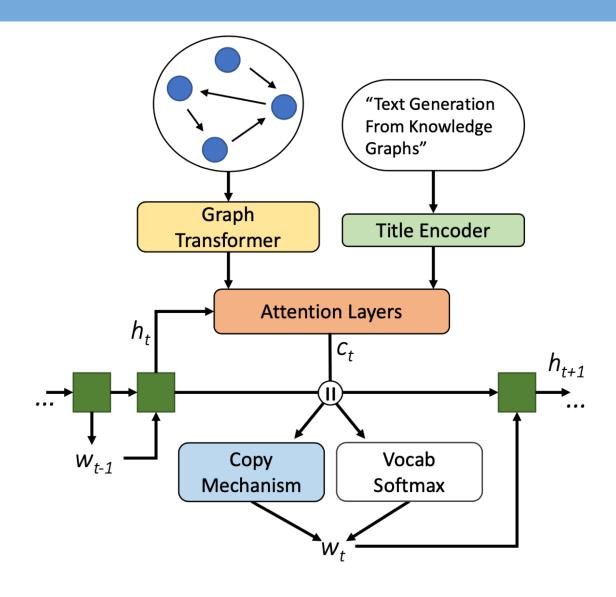
Title	Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells					
Entities	Related: nasopharyngeal carcinoma; di	allyl disulfide				
Output	Human (Neal et al., 2012)	System	Post-edited by Human			
Output Abstract	Human (Neal et al., 2012) Background: Maspin, a putative tumor suppressor that is down-regulated in breast and prostate cancer, has been associated with decreased cell motility. Snail transcription factor is a zinc finger protein that is increased in breast cancer and is associated with increased tumor motility and invasion by induction of epithelial-mesenchymal transition (EMT). We investigated the molecular mechanisms by which Snail increases tumor motility and invasion utilizing prostate cancer cells. Methods: Expression levels were analyzed by RT-PCR and western blot analyses. Cell motility and invasion assays were performed, while Snail regulation and binding to maspin promoter was analyzed by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Results: Snail protein expression was higher in different prostate can-	Background: Snail is a multifunctional protein that plays an important role in the pathogenesis of prostate cancer. However, it has been shown to be associated with poor prognosis. The purpose of this study was to investigate the effect of negatively on the expression of maspin in human nasopharyngeal carcinoma cell lines. Methods: Quantitative real-time PCR and western blot analysis were used to determine whether the demethylating agent was investigated by quantitative RT-PCR (qRT-PCR) and Western blotting. Results showed that the binding protein plays a significant role in the regulation of tumor growth and progression.	Post-edited by Human Background: Snail is a multifunctional protein that plays an important role in the pathogenesis of prostate cancer. It has been shown associated with poor prognosis. The purpose of this study is to investigate the negative effect of on the expression of Maspin in human nasopharyngeal carcinoma cell lines. Methods: Quantitative RT-PCR (qRT-PCR) and western blot analyses were used to determine correlation of the two proteins expressions. Results showed that the binding protein plays a significant role in the regulation of tumor growth and progression.			
	cer cells lines as compared to normal prostate epithelial cells.		J.O.A.			
Conclusion and Future work	Collectively, our results indicate for the first time that Snail can negatively regulate maspin through direct promoter repression resulting in increased migration and invasion in prostate cancer cells. This study reveals a novel mechanism of how Snail may function and show the importance of therapeutic targeting of Snail signaling in future.	In summary, our study demonstrates that Snail negatively inhibited the expression of Maspin in human nasopharyngeal carcinoma cell lines and in vitro. Our results indicate that the combination of the demethylating agent might be a potential therapeutic target for the treatment of prostate cancer .	In summary, our study in vitro demonstrates that Snail negatively inhibits the expression of Maspin in human nasopharyngeal carcinoma cell lines. Our results further indicate that Maspin might be a potential therapeutic target for the treatment of prostate cancer.			
new flue	Role of maspin in cancer (Berardi et al., 2013)	The role of <i>nasopharyngeal car-</i> <i>cinoma</i> in the rat model of <i>prostate cancer</i> cells	The role of <i>Maspin</i> in the rat model of <i>nasopharyn-geal carcinoma</i> cells			

Results (cont'd)

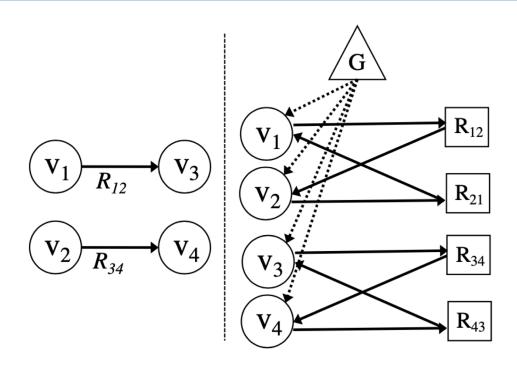
Model	Title-to-Abstract		Abstract-to-Conclusion		Conclusion and	
Model			and Futu	re Work	Future Wo	rk-to-Title
	Perplexity	METEOR	Perplexity	METEOR	Perplexity	METEOR
Seq2seq (Bahdanau et al., 2015)	19.6	9.1	44.4	8.6	49.7	6.0
Editing Network (Wang et al., 2018b)	18.8	9.2	30.5	8.7	55.7	5.5
Pointer Network (See et al., 2017)	146.7	8.5	74.0	8.1	47.1	6.6
Our Approach (-Repetition Removal)	13.4	12.4	24.9	12.3	31.8	7.4
Our Approach	11.5	13.0	18.3	11.2	14.8	8.9


Task	Input		Output	Domain Expert	Non-expert
	Human Title	Different	Abstract (1st)	10	30
	Truman True	Same	Abstract (1st)	30	16
	System Abstract	Different	Conclusion and	12	0
End-to-End	System Abstract	Same	Future work	8	8
	System Conclusion and	Different	Title	12	2
	Future work	Same	11116	12	25
	System Title	Different	Abstract (2nd)	14	4
	Human Abstract	Different	Conclusion and	12	14
Diagnostic	Human Abstract	Same	Future work	24	20
	Human Conclusion and	Different	Title	8	12
	Future work	Same	Title	2	10

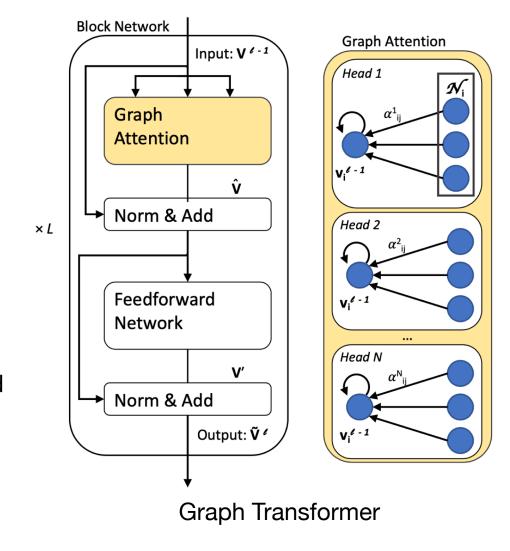
Results (cont'd)


Output	Without Memory Networks	Without Link Prediction	Without Repetition Removal
Abstract	Background: Snail has been reported	Background: Snail has been	Background: Snail is a major
	to exhibit a variety of biological func-	shown to be associated with	health problem in human ma-
	tions. In this study, we investigated	poor prognosis. In this study,	lignancies. However, the role
	the effect of negatively on maspin	we investigated the effect of	of Snail on the expression of
	demethylation in human prostate	negatively on the expression	maspin in human prostate can-
	cancer cells. Methods: Quantitative	of maspin in human prostate	cer cells is not well understood.
	real-time PCR and western blot analy-	cancer cells. Methods: Cells	The aim of this study was to
	sis were used to investigate the effects	were treated with a single dose	investigate the effect of Snail
	of the demethylating agent on the ex-	of radiotherapy for 24 h, and	on the expression of maspin in
	pression of the protein kinase (TF)	was used to investigate the sig-	human prostate cancer cells.
	gene promoter. Results: The results	nificance of a quantitative factor	Methods: The expression of the
	showed that the presence of a single	for the treatment of the disease.	expression of Snail and maspin
	dose of 50 μM in a dose-dependent	Results: The remaining controls	was investigated using quantita-
	manner, whereas the level of the BMP	showed a significant increase in	tive RT-PCR and western blot
	imipramine was significantly higher	the G2/M phase of the tumor	analysis. Results: The remaining
	than that of the control group.	suppressor protein (p<0.05).	overall survival (OS) and overall
			survival (OS) were analyzed.
Conclusion	3,	In summary, our results demon-	In summary, our results demon-
and	that negatively inhibited the expres-	strate that negatively inhibited	strate that snail inhibited the ex-
Future	sion of the BMP imipramine in hu-	the expression of maspin in hu -	pression of maspin in human
work	man prostate cancer cells. Our find-	man prostate cancer cells. Our	prostatic cells. The expression
	ings suggest that the inhibition of	findings suggest that the combi-	of snail in PC-3 cells by snail ,
	maspin may be a promising therapeu-	nation of radiotherapy may be	and the expression of maspin
	tic strategy for the treatment.	a potential therapeutic target for	was observed in the presence of
		the treatment of disease.	the expression of maspin .
New Title	Protective effects of homolog on hu-	The role of prostate cancer in	The role of maspin and maspin
	man breast cancer cells by inhibiting	human breast cancer cells	in human breast cancer cells
	the Endoplasmic Reticulum Stress		

Text Generation from Knowledge Graphs with Graph Transformers (NAACL'19)


- Text-to-graph extraction
- Graph-to-text generation

Graph Writer Model



Graph Attention and Graph Transformer

Converting disconnected labeled graph to connected unlabeled graph for use in attention-based encoder.

v_i refer to vertices, R_{ij} to relations, and G is a global context node.

Results

Title Knowledge	Block and Group Regularized Sparse Modeling for Dictionary Learning (dictionary learning, CONJUNCTION, sparse coding); (optimization problems, USED-FOR, dictionary learning); (optimization problems, USED-FOR, sparse coding)
GraphWriter	Sparse representations have recently been shown to be effective in many optimization problems. However, existing dictionary learning methods are limited in the number of dictionary blocks, which can be expensive
GAT	to obtain. In this paper, we propose a novel approach to dictionary learning based on sparse coding In this paper, we consider the problem of dictionary learning in well-known datasets. In particular, we consider the problem of dictionary learning, where the goal is to find a set of dictionary blocks that maximize the likelihood of a given set of dictionary blocks
EntityWriter	We propose a novel dictionary learning framework for reconstructed block/group sparse coding schemes. The dictionary learning framework is based on the descent, which is a block structure of the group structure
Rewriter	This paper presents a new approach to the k-means of the algorithm. The proposed approach is based on the basis of the stationarity algorithm. The algorithm is based on the fact that the number of bits is a constant of the base of the base of the input
Gold	This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously

Results (cont'd)

Title Knowledge	Image Interpolation with Directionlets (directionally adaptive image interpolation USED-FOR edge information); (numeric and visual quality, HYPONYM-OF, directionally adaptive image interpolation); (directionlets, EVALUATE-FOR, multiple-direction wavelet transform)
GraphWriter	In this paper, we propose a novel directionally adaptive image interpolation based on the multiple-direction wavelet transform, called directionlets, which can be used as a directionlets to improve the numeric and visual quality of the directionally adaptive image interpolation
GAT	In this paper, we propose a novel directionally adaptive image interpolation, called directionally adaptive image interpolation, for directionally adaptive image interpolation, which is based on the multiple-direction wavelet transform
EntityWriter	We present a novel directionally adaptive image interpolation for numeric and visual quality. The wavelet transform is based on the wavelet transform between the low-resolution image and the interpolated image. The high-resolution image is represented by a wavelet transform
Rewriter	We present a new method for finding topic-specific data sets. The key technical contributions of our approach is to be a function of the terrestrial distributed memory. The key idea is to be a function of the page that seeks to be ranked the buckets of the data. The basic idea is a new tool for the embedded space
Gold	We present a novel directionally adaptive image interpolation based on a multiple-direction wavelet transform, called directionlets. The directionally adaptive image interpolation uses directionlets to efficiently capture directional features and to extract edge information along different directions from the low-resolution image