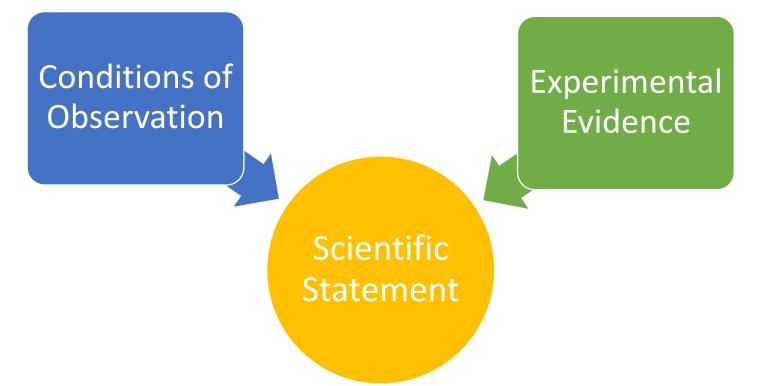
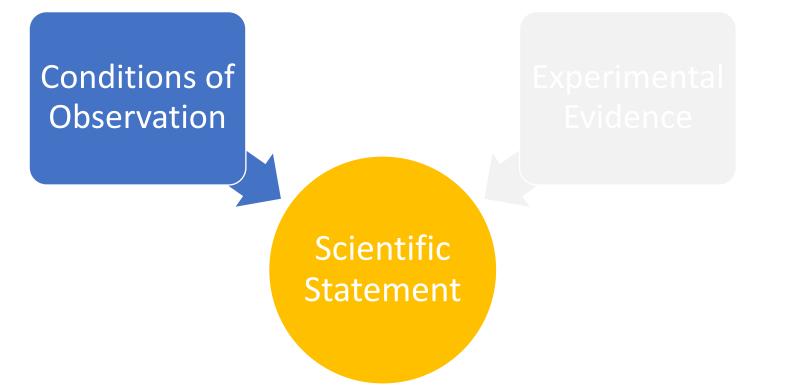
Scientific Text Mining and Knowledge Graphs

Chapter 1 Part 4: Scientific Statements

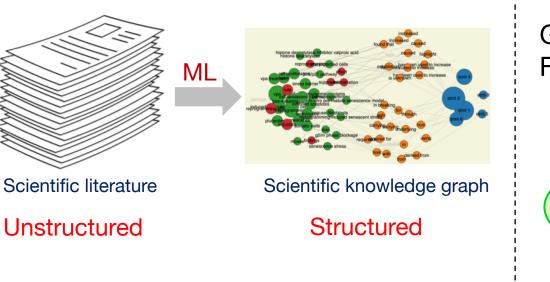

Presenter: Meng Jiang

University of Notre Dame

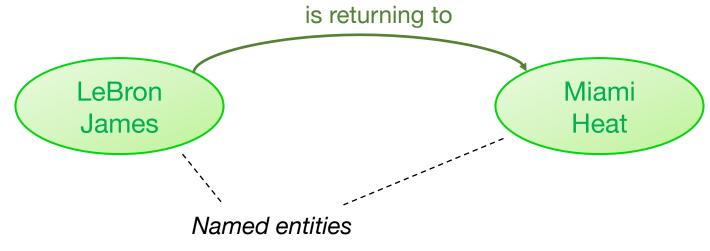
mjiang2@nd.edu


Two Works

- Extracting **conditional statements** for biomedical literature (KDD'19, EMNLP'19, TCBB)
- Extracting experimental evidence for data science (WWW'20)



Two Works

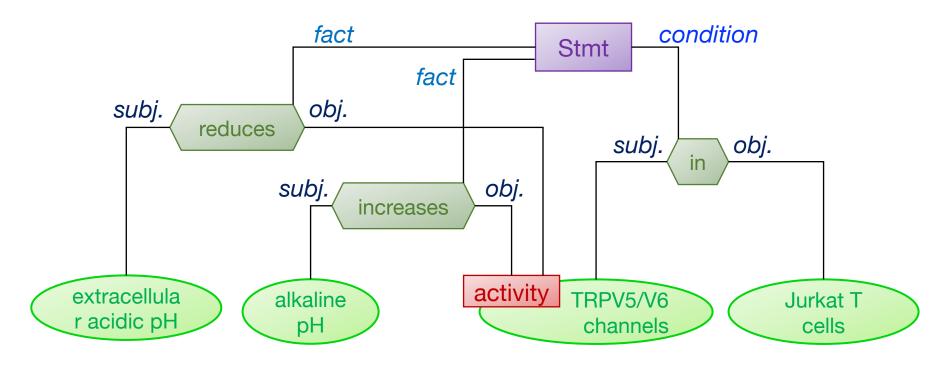

- Extracting **conditional statements** for biomedical literature (KDD'19, EMNLP'19, TCBB)
- Extracting experimental evidence for data science (WWW'20)

Structuring Text into Knowledge Graph

Given *"LeBron James is returning to Miami Heat..."* Find <u>fact tuple</u>: (LeBron James, is returning to, Miami Heat)

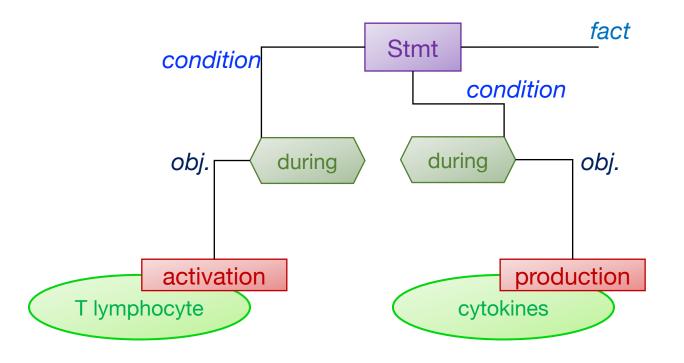
Science IE: Conditional Statements

"We showed that extracellular acidic pH reduces the activity of TRPV5/V6 channels, whereas alkaline pH increases the activity of TRPV5/V6 channels in Jurkat T cells."

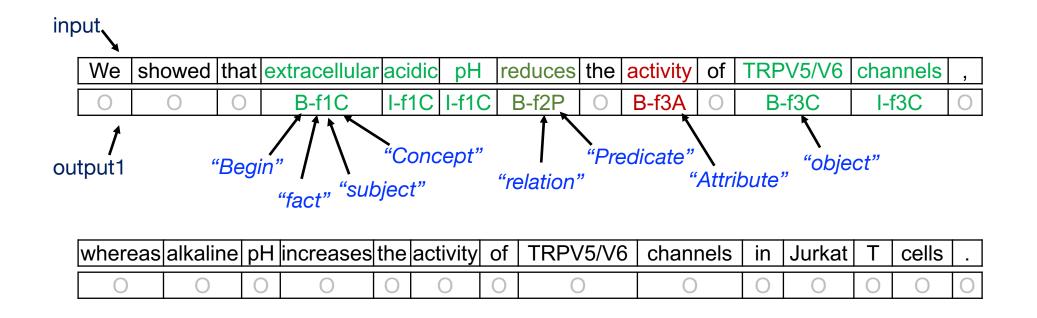

Fact tuple 1: (extracellular acidic pH, reduces, {TRPV5/V6 channels: activity}) Fact tuple 2: (alkaline pH, increases, {TRPV5/V6 channels: activity}) Condition tuple: (TRPV5/V6 channels, in, Jurkat T cells)

"During T lymphocyte activation as well as production of cytokines, ..."

Condition tuple 1: (-, during, {T lymphocyte: activation}) Condition tuple 2: (-, during, {cytokines: production})


Three-Level Scientific KGs

Fact tuple 1: (extracellular acidic pH, reduces, {TRPV5/V6 channels: activity}) Fact tuple 2: (alkaline pH, increases, {TRPV5/V6 channels: activity}) Condition tuple: (TRPV5/V6 channels, in, Jurkat T cells)



Three-Level Scientific KGs (cont'd)

"During T lymphocyte activation as well as production of cytokines, ..." Condition tuple 1: (-, during, {T lymphocyte: activation}) Condition tuple 2: (-, during, {cytokines: production})

Sequence Labeling for IE

Fact tuple 1: (extracellular acidic pH, reduces, {TRPV5/V6 channels: activity})

Multi-Output Sequence Labeling

We	showed	that	extracellular	acidic	pН	reduces	the	activity	of	TRPV5/V6	channels	,
0	0	0	B-f1C	I-f1C	I-f1C	B-f2P	0	B-f3A	0	B-f3C	I-f3C	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

whereas	alkaline	pН	increases	the	activity	of	TRPV5/V6	channels	in	Jurkat	Т	cells	
0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
0	B-f1C	I-f1C	B-f2P	0	B-f3A	0	B-f3C	I-f3C	0	0	0	0	\bigcirc
0	0	0	0	0	0	0	B-c1C	I-c1C	B-c2P	B-c3C	I-c3C	I-c3C	\bigcirc

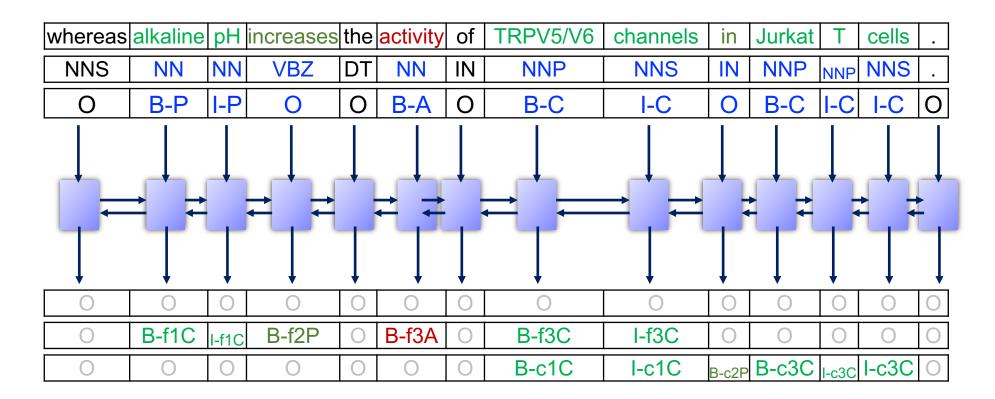
Fact tuple 1: (extracellular acidic pH, reduces, {TRPV5/V6 channels: activity}) Fact tuple 2: (alkaline pH, increases, {TRPV5/V6 channels: activity}) Condition tuple: (TRPV5/V6 channels, in, Jurkat T cells)

Sequence Labels

			localhost								
	owed that	extrac V6 chann	ellular acidic p		the line pH						
increases	the ac	tivity	of TRP\	/5/V6 channels	in						
Jurkat	Jurkat T cells merge token(s) into a span										
Add a fac	t Add a c	ondition	Save for	statement							
2 open	slots for a new	tuple	drag spans into	slots 🙆 save	annotations						
		ct — attribute	relation	concept	ect attribute						
Fact 1:	alkaline pH	NIL	increase	TRPV5/V6	activity						
Fact 2:	extracellul	NIL	reduces	TRPV5/V6	activity						
Condition 1:	TRPV5/V6	NIL	in	Jurkat T c							

B-f1C	I-f1C	B-c1C	I-c1C
B-f1A	I-f1A	B-c1A	I-c1A
B-f2P	I-f2P	B-c2P	I-c2P
B-f3C	I-f3C	B-c3C	I-c3C
B-f3A	I-f3A	B-c3A	I-c3A
0			

- 3 expert annotators
- 31 PubMed paper abstracts (docs)
- > 30 minutes per anno. per doc
- 336 statement sentences
- 756 fact tuples
- 654 condition tuples

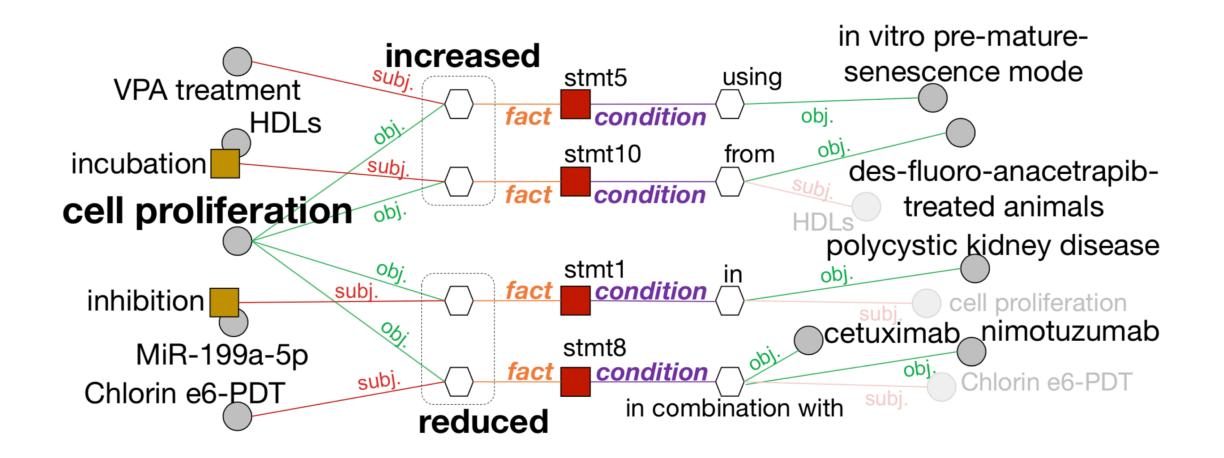

More Signals from Massive Data

- Unlabeled data
 - 15,544,338 documents
 - 140,949,399 statement sentences
- Feature extraction
 - Tokenization
 - Part-of-speech tagging
 - Phrase mining

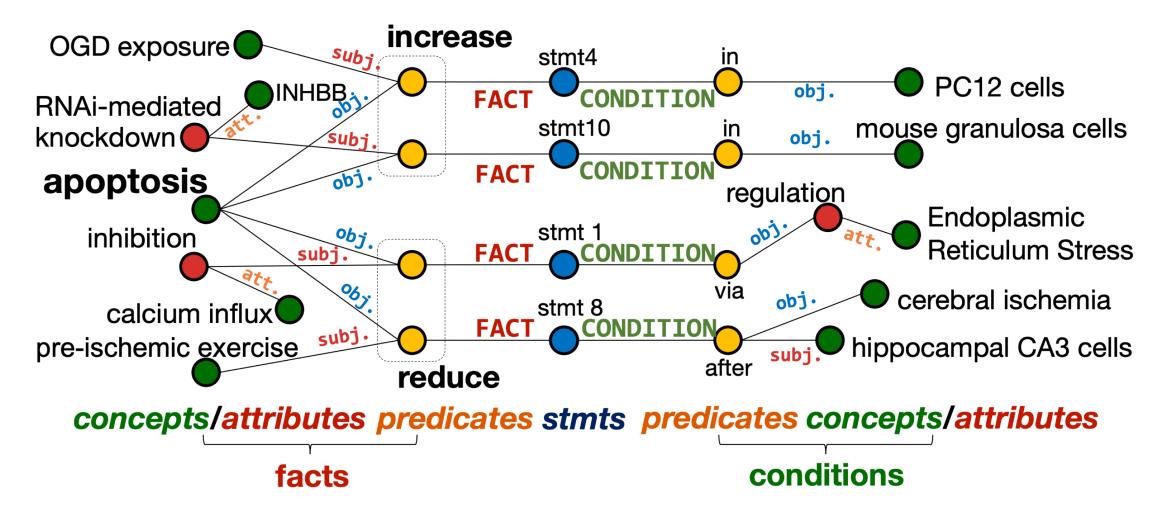
- Concept detection
- Attribute discovery

Structured Output	Publications ('17-)
P _{hrase}	TKDE'18
Concept	ACL'20sub
$H(c_{\text{oncept}} \times r_{\text{elation}})$	KDD'18c, TextGraphs'19
$D(e_{\text{ntity}} \times a_{\text{ttribute}} \times v_{\text{alue}})$	KDD'17, KDD'18b, EYRE'19
$D(e_{\text{ntity}} \times a_{\text{ttribute}} \times v_{\text{alue}} \times t_{\text{start}} \times t_{\text{end}})$	WWW'19a, FEVER'20

Multi-Input Multi-Output Sequence Labeling

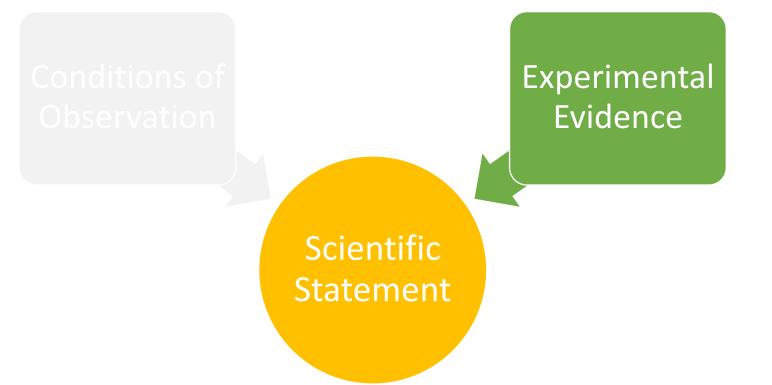


MIMO (BiLSTM/BERT)


Evaluation

	То	ken Labe	I Prediction (%)		Tuple Ex	xtraction (%)
	Р	R	F1 / fact, cond.	Р	R	F1 / fact, cond.
Allennlp OpenIE (Stanovsky et al. 2018)	-	-	-	42.60	38.22	40.29 / -, -
Stanford OpenIE (Angeli et al. 2015)	-	-	-	47.11	41.62	44.19 / -, -
Structured SVM (Tsochantaridis et al. 2015)	32.68	25.80	28.83 / 32.76, 24.71	47.62	46.15	46.87 / 45.01, 48.72
CRF (Lafferty et al. 2001)	60.07	41.92	49.37 / 56.23, 41.87	65.19	62.44	63.78 / 64/07, 63.44
BiLSTM-LSTMd (Zheng et al. 2017)	61.00	56.26	58.53 / 65.16, 51.78	71.57	66.55	68.97 / 69.51, 68.41
MO (BiLSTM based)	-	-	-	71.80	72.34	72.07 / 72.39, 71.73
MIMO (BiLSTM based)	67.80	58.24	62.66 / 66.67, 58.58	75.35	74.67	75.01 / 74.91, 75.10
BERT-BiLSTM	70.07	70.19	70.13 / 74.30, 65.88	78.64	73.67	76.08 / 76.14, 75.99
MO (BERT based)	-	-	-	77.38	79.19	78.27 / 76.74, 79.89
MIMO (BERT based)	75.91	71.08	73.41 / 76.01, 70.75	81.06	80.53	80.79 / 79.94, 81.64

Case Study



Case Study (cont'd)

Two Works

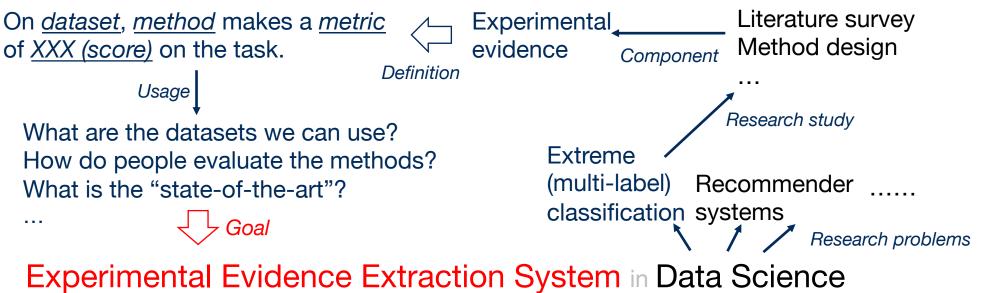
- Extracting **conditional statements** for biomedical literature (KDD'19, EMNLP'19, TCBB)
- Extracting experimental evidence for data science (WWW'20)

Motivation

PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification by CMU, UT Austin, Pentuum [**KDD 2017**]

Data	Metrics	FastXML	PfastreXML	SLEEC	PDSparse	DiSMEC	PPDSparse
Amazon-670K	T _{train}	5624s	6559s	20904s		174135s	921.9s
Ntrain=490449	P@1 (%)	33.12	32.87	35.62		43.00	43.04
N _{test} =153025	P@3 (%)	28.98	29.52	31.65	MLE	38.23	38.24
D=135909	P@5 (%)	26.11	26.82	28.85		34.93	34.94
K=670091	model size	4.0G	6.3G	6.6G		8.1G	5.3G
	T _{test} /N _{test}	1.41ms	1.98ms	6.94ms		148ms	20ms
WikiLSHTC-325K	T _{train}	19160s	20070s	39000s	94343s	271407s	353s
N _{train} =1778351	P@1 (%)	50.01	57.17	58.34	60.70	64.00	64.13
$N_{test}=587084$	P@3 (%)	32.83	37.03	36.7	39.62	42.31	42.10
D=1617899	P@5 (%)	24.13	27.19	26.45	29.20	31.40	31.14
K=325056	model size	14G	16G	650M	547M	8.1G	4.9G
	T _{test} /N _{test}	1.02ms	1.47ms	4.85ms	3.89ms	65ms	290ms
Delicious-200K	T _{train}	8832.46s	8807.51s	4838.7s	5137.4s	38814s	2869s
N _{train} =196606	P@1 (%)	48.85	26.66	47.78	37.69	44.71	45.05
Ntest=100095	P@3 (%)	42.84	23.56	42.05	30.16	38.08	38.34
D=782585	P@5 (%)	39.83	23.21	39.29	27.01	34.7	34.90
K=205443	model size	1.3G	20G	2.1G	3.8M	18G	9.4G
	T _{test} /N _{test}	1.28ms	7.40ms	2.685ms	0.432ms	311.4ms	275ms
AmazonCat-13K	T _{train}	11535s	13985s	119840s	2789s	11828s	122.8s
N _{train} =1186239	P@1 (%)	94.02	86.06	90.56	87.43	92.72	92.72
N _{test} =306782	P@3 (%)	79.93	76.24	76.96	70.48	78.11	78.14
D=203882	P@5 (%)	64.90	63.65	62.63	56.70	63.40	63.41
K=13330	model size	9.7G	11G	12G	15M	2.1G	355M
	T _{test} /N _{test}	1.21ms	1.34ms	13.36ms	0.87ms	0.20ms	1.82ms

Motivation (cont'd)


AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification by Yahoo Japan Corporation [**KDD 2017**]

Dataset		AnnexML	SLEEC	FastXML	PfastreXML	PLT	PD-Sparse	Most common
	P@1	0.9355	0.8919	0.9310	0.8994	0.9147	0.8931	0.2988
AmazonCat-13K	P@3	0.7838	0.7517	0.7818	0.7724	0.7584	0.7403	0.1878
	P@5	0.6332	0.6109	0.6338	0.6353	0.6102	0.6011	0.1486
	P@1	0.8650	0.8554	0.8295	0.8263	0.8434	0.7771	0.8079
Wiki10-31K	P@3	0.7428	0.7359	0.6756	0.6874	0.7234	0.6573	0.5050
	P@5	0.6419	0.6310	0.5770	0.6006	0.6272	0.5539	0.3675
	P@1	0.4666	0.4703	0.4320	0.3762	0.4537	0.3437	0.3873
Delicious-200K	P@3	0.4079	0.4167	0.3868	0.3562	0.3894	0.2948	0.3675
	P@5	0.3764	0.3888	0.3621	0.3403	0.3588	0.2704	0.3552
	P@1	0.6336	0.5557	0.4975	0.5810	0.4567	0.6126	0.1588
WikiLSHTC-325K	P@3	0.4066	0.3306	0.3310	0.3761	0.2913	0.3948	0.0603
	P@5	0.2979	0.2407	0.2445	0.2769	0.2195	0.2879	0.0380
	P@1	0.6386	0.5839	0.4934	0.5891	_	_	0.1529
Wikipedia-500K	P@3	0.4269	0.3788	0.3351	0.3937	_	_	0.0583
	P@5	0.3237	0.2821	0.2586	0.3005	_	_	0.0368
	P@1	0.4208	0.3505	0.3697	0.3919	0.3665	0.3370	0.0028
Amazon-670K	P@3	0.3665	0.3125	0.3332	0.3584	0.3212	0.2962	0.0027
	P@5	0.3276	0.2856	0.3053	0.3321	0.2885	0.2684	0.0023

Motivation (cont'd)

Dataset	(%)	SLEEC	FastXML	PfastreXML	PDSparse
AmazonCat	P@1	90.56/89.19	94.02/93.10	86.06/89.94	87.43/89.31
-13K	P@3	76.96/75.17	79.93/78.18	86.06/77.24	87.43/74.03
	P@5	62.63/61.09	64.90/63.38	63.65/63.53	56.70/60.11
Delicious	P@1	47.78/47.03	48.85/43.20	26.66/37.62	37.69/34.37
-200K	P@3	42.05/41.67	42.84/38.68	23.56/35.62	30.16/29.48
	P@5	39.29/38.88	39.83/36.21	23.21/34.03	27.01/27.04
WikiLSHTC	P@1	58.34/55.57	50.01/49.75	57.17/58.10	60.70/61.26
-325K	P@3	36.70/33.06	32.83/33.10	37.03/37.61	39.62/39.48
	P@5	26.45/24.07	24.13/24.45	27.19/27.69	29.20/28.79

Motivation

with Hybrid Table Features and Ensemble Learning

Develop a computational method to build the system

- Feature extraction
- Learning strategies

System Pipeline

PDFs in Digital Libraries

Tables i	in PDF
----------	--------

	Metrics	UserMean]	temMean	NMF	PMF	nsiona	TCF	Trust	S	oRec	RSTE
	MAE	0.9134	0.9768 0.8738			0.8676 0.		0.9054		8442	0.8377
90%	RMSE	1.1688	1.2375	1.1649	1.157		.1697	1.1959		1333	1.1109
	MAE	0.9285	0.9913	0.8975	0.895		.9044	0.9221		8638	0.8594
80%	RMSE	1.1817	1.2584	1.1861	1.182		.1761	1.2140		1530	1.1346
Training							ity = 10				
Data	Metrics	UserMean	temMean	NMF	PMF		TCF	Trust	S	oRec	RSTE
	MAE	0.9134	0.9768	0.8712	0.865	1 0	.9005	0.9039	0	8404	0.8367
90%	RMSE	1.1688	1.2375	1.1621	1.154			1.1917		1293	1.1094
	MAE	0.9285	0.9913	0.8951	0.888		.9044	0.9215		8580	0.8537
80%		1.1817	1.2584	1.1832	1.176		.1761	1.2132		1492	1.1256
	80%	Improve	18.59%	11.85%	3.30%	2.63%	1.77%	0.5579	0.5576	5 0.5548	0.554
		Tabl	e 5: Perfor					lity = 10			
Dataset	Training	Metrics MAE	0.6809	ItemMean 0.6288	NMF 0.5732	PMF 0.5693	RSTE 0.5643	SR1 _{vss}	$SR1_{pc}$	c SR2 _{vs}	SR2 _p
								0.5579	0.5576	5 0.5548	0.554
	80%	RMSE	0.8480	0.7898	0.7225	0.7200	0.7144	0.7026	0.702	2 0.6995	0.698
		Improve	17.59%	11.52%	3.28%	2.94%	2.18%	0.7026	0.702.	0.0992	0.098
		MAE	0.6823	0.6300	0.5768	0.5737	0.5698	0.5627	0.5623	3 0.5597	0.559
Douban	60%	Improve	18.02%	11.22%	3.03%	2.51%	1.84%		01002		0.000
		RMSE Improve	0.8505	0.7926 11.15%	0.7351 4.20%	0.7290 3.40%	0.7207 2.29%	0.7081	0.7078	3 0.7046	0.704
		MAE	0.6854	0.6317	4.20%	0.5868	0.5767			-	-
		Improve	17.06%	10.00%	3.63%	3.12%	1.42%	0.5706	0.5703	2 0.5690	0.568
	40%	RMSE	0.8567	0.7971	0.7482	0.7411	0.7295				
			16.83%	10.61%	4.77%	3.86%	2.33%	0.7172	0.716	0.7129	0.712
		Improve									-
		Improve MAE	0.9134	0.9768	0.8712	0.8651	0.8367	0.0000	0.000	0.0076	
	0057	MAE Improve	0.9134 9.61%			4.57%	0.8367 1.33%	0.8290	0.828	0.8258	0.825
	90%	MAE Improve RMSE	0.9134 9.61% 1.1688	0.9768 15.48% 1.2375	0.8712 5.23% 1.1621	4.57%	1.33%			_	
Eninions	90%	MAE Improve RMSE Improve	0.9134 9.61% 1.1688 8.12%	0.9768 15.48% 1.2375 13.22%	0.8712 5.23% 1.1621 7.59%	$\frac{4.57\%}{1.1544}$ 6.97%	1.33% 1.1094 3.20%	0.8290 1.0792	0.828	_	
Epinions		MAE Improve RMSE Improve MAE	0.9134 9.61% 1.1688 8.12% 0.9285	0.9768 15.48% 1.2375 13.22% 0.9913	0.8712 5.23% 1.1621 7.59% 0.8951	4.57% 1.1544 6.97% 0.8886	1.33% 1.1094 3.20% 0.8537			1.074	1.073
Epinions	90%	MAE Improve RMSE Improve	0.9134 9.61% 1.1688 8.12%	0.9768 15.48% 1.2375 13.22%	0.8712 5.23% 1.1621 7.59%	$\frac{4.57\%}{1.1544}$ 6.97%	1.33% 1.1094 3.20%	1.0792	1.079	1.074	1.073

Experimental Result Database (**ERD**)

	Α	В	С	D	E
1	Method	Dataset	Metric	Score	Source
10	UserMean	Epinions	MAE	0.9319	TOIS11-paper7-table3
11	UserMean	Epinions	MAE	0.9285	TIST11-paper3-table3
12	UserMean	Epinions	MAE	0.9285	WSDM11-paper12-table5
100	ltemMean	Epinions	RMSE	1.1973	TOIS11-paper7-table4
		Epinions	RMSE	1.2584	TIST11-paper3-table3
	ItemMean	Epinions	RMSE	1.2584	WSDM11-paper12-table5
	Trust	Epinions	RMSE	1.2384	TIST11-paper3-table3
	NMF	Epinions	RMSE	1.1832	TOIS11-paper7-table4
	NMF	Epinions	RMSE	1.1832	TIST11-paper3-table3
115	NMF	Epinions	RMSE	1.1832	WSDM11-paper12-table5
116	SVD	Epinions	RMSE	1.1812	TOIS11-paper7-table4
117	TCF	Epinions	RMSE	1.1761	TIST11-paper3-table3
118	PMF	Epinions	RMSE	1.1760	TOIS11-paper7-table4
119	PMF	Epinions	RMSE	1.1760	TIST11-paper3-table3
120	PMF	Epinions	RMSE	1.1760	WSDM11-paper12-table5
121	SoRec	Epinions	RMSE	1.1492	TOIS11-paper7-table4
122	RSTE	Epinions	RMSE	1.1256	TIST11-paper3-table3
123	RSTE	Epinions	RMSE	1.1256	WSDM11-paper12-table5
124	SR1VSS	Epinions	RMSE	1.1016	WSDM11-paper12-table5
125	SR1PCC	Epinions	RMSE	1.1013	WSDM11-paper12-table5
126	SR2VSS	Epinions	RMSE	1.0958	WSDM11-paper12-table5
127	SR2PCC	Epinions	RMSE	1.0954	WSDM11-paper12-table5
169	SoRec	Moviel ens	RMSF	l	

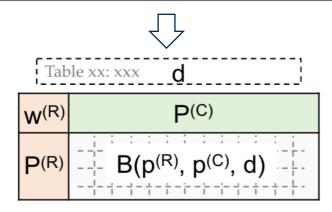

This is the most challenging task!

Table Components

- Caption: d
- Row names: P^(R)
- Column names: P^(C)
- Name indicator: W^(R)
- Table body: $B(P^{(R)}, P^{(C)}, d)$

Table 4:	Performance	on	the	Twitter	testing	data
set by di	fferent approa	\mathbf{che}	s. d			

W ^{(F}	Algorithm	Precision	Recall	F1 P() Accuracy
	Textual	0.746	0.693	0.727	0.722
	Visual	0.584		0 573	0.553
P ^{(R}	Early Fusion	0.730	<u>0.</u> ′ B(∙,	·, ·) <u>37</u>	0.717
	Late Fusion	0.634	0.610	0.622	0.604
	CCR	0.831	0.805	0.818	0.809

(a) 1×1 , 1 row indicator, caption

Table Templates

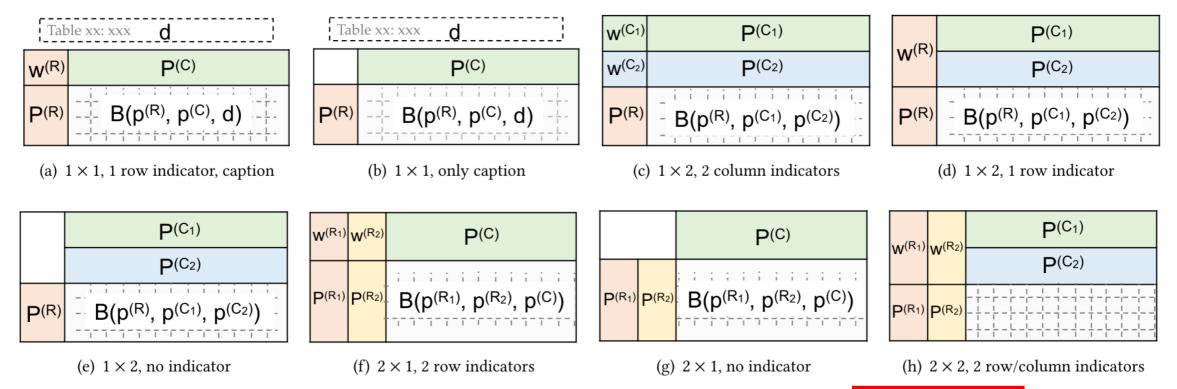
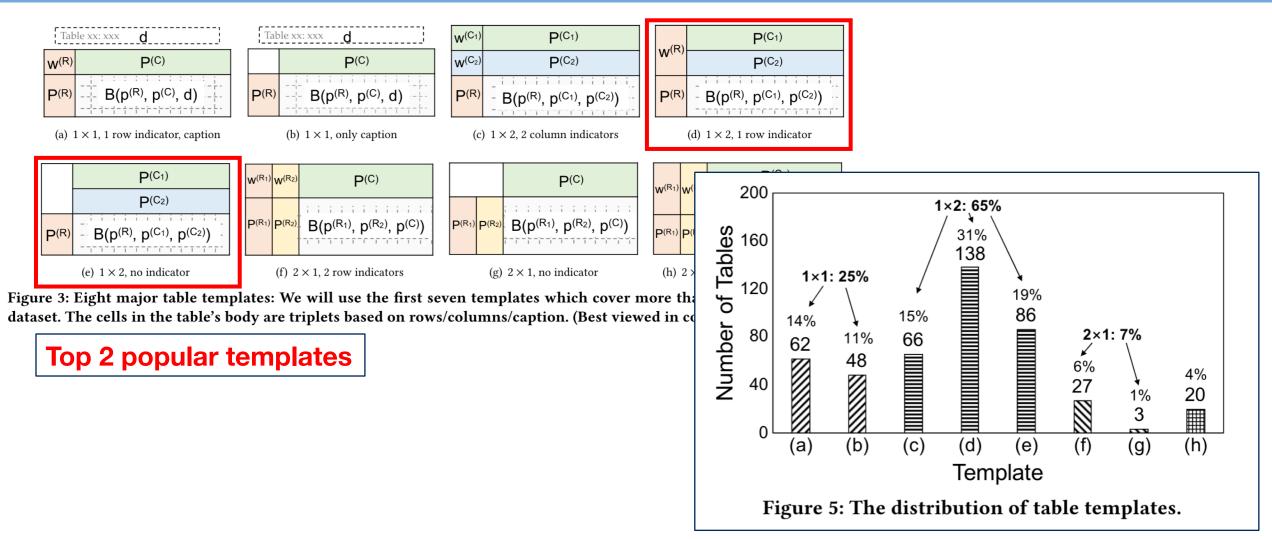



Figure 3: Eight major table templates: We will use the first seven templates which cover more than 95% of the tables in our dataset. The cells in the table's body are triplets based on rows/columns/caption. (Best viewed in color)

Table Templates (cont'd)

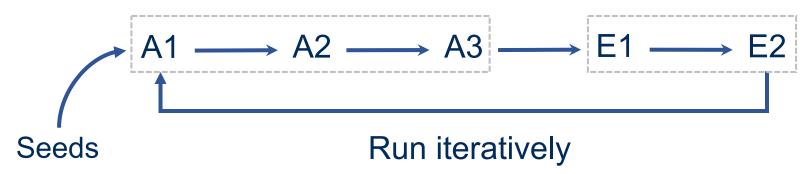
Problem Definition

	able 4: Perfo			witter t	Dataset	Method	Metric	Score		
5	set by different approaches.							- Textual	Precision	0.746
W ^{(F}	Algorithm	Precision	Recall	FI P(C) Accuracy		Twitter	Textual	Recall	0.693
	Textual	0.746	0.093	0.727	0.722					
	Visual	0.584	0.561	° ^к 73	0.553					
P ^{(R}	Early Fusion	0.730	<u></u> , B(∙,	·, ·) <u>37</u>	0.717		Twitter	CCR	F1	0.818
	Late Fusion	0.634	0.610	0.622	0.604					
	CCR	0.831	0.805	0.818	0.809]	Twitter	CCR	Accuracy	0.809

$$\mathcal{P} = \bigcup_{T = [\mathcal{R}, C, d, \mathcal{B}]} P^{(R_{(:)})} \cup P^{(C_{(:)})}, \quad \Box \rangle \quad \mathcal{L} = \{\text{``method", ``dataset", ``metric"}\}.$$

Problem: Given a set of tables extracted from PDFs $\{T\}$, (1) classify the concepts into three categories $f: \mathcal{P} \to \mathcal{L}$ (2) unify the cells into (method, dataset, metric, score)-tuples.

Ensemble Learning


Concept-to-Label $f: \mathcal{P} \to \mathcal{L}$

Rule-based classifiers

Three <u>A</u>ssumptions

Learning-based classifiers

- Semantic concept <u>E</u>mbeddings
- Structural concept <u>E</u>mbeddings

Assumption 1

Row/column header indication. If the upper-leftmost cell of the table has a specific word (e.g., "Methods", "Algorithm"), the names on the corresponding columns/rows are more likely to have the label as the word indicates.

	Table 4: Performance on the <u>Twitter</u> testing data set by different approaches. d										
W ^{(F}) Algorithm	Precision	Recall	F1 P() Accuracy						
	Textual	0.746	0.693	0.727	0.722						
	Visual	0.584	0.561	<u>^</u> ~73	0.553						
P(R	Early Fusion	0.730	<u>0.</u> ′ B(∙,	;;;) <u>37</u>	0.717						
	Late Fusion	0.634	0.610	0.622	0.604						
	CCR	0.831	0.805	0.818	0.809						

$$\min_{\phi,\psi} J_1(\phi,\psi) = \sum_{T = [\mathcal{R}, C, \dots]} \sum_{(w, P) \in \mathcal{R} \cup C} \sum_{l \in \mathcal{L}} \left(\sum_{p \in P} \phi(p \in P^{(l)}) - |P| \cdot \psi(w \in W^{(l)}) \right)^2, \quad (6)$$

$$label prediction \phi \qquad word indication w$$

0

Row/column type consistency. Concepts on the same column/row are likely to have the same type of label. For example, if we know "Precision" is a "metric", then "Recall" is likely to be a "metric".

	Table 4: Performance on the <u>Twitter</u> testing data set by different approaches. d									
W ^{(F}) Algorithm	Precision	Recall	F1 P() Accuracy					
	Textual	0.746	0.693	0.727	0.722					
_ (5	Visual	0.584	0.561	<u>° </u> ~73	0.553					
P(R	Early Fusion	0.730	<u>0.</u> ′ B(∙,	·, ·) <u>37</u>	0.717					
	Late Fusion	0.634	0.610	0.622	0.604					
	CCR	0.831	0.805	0.818	0.809					

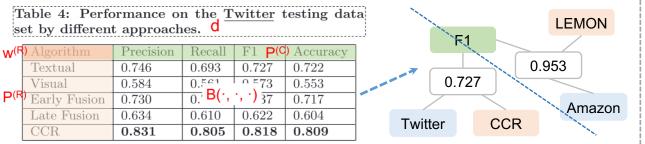
$$\max_{\phi} J_2(\phi) = \sum_{T = [\mathcal{R}, C, \dots]} \sum_{P \in \mathcal{R} \cup C} \sum_{p \in P} \phi(p \in P^{(l^*(P))}), \qquad (8)$$

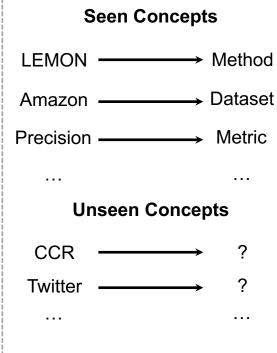
majority of the concepts

Assumption 3

Cell context completeness. A table often **covers all the three types** of labels on its columns, rows, and caption, in order to provide complete contexts to explain the values in the cells. For example, if the caption has a dataset name and row names are methods, then the column names are likely to be metric.

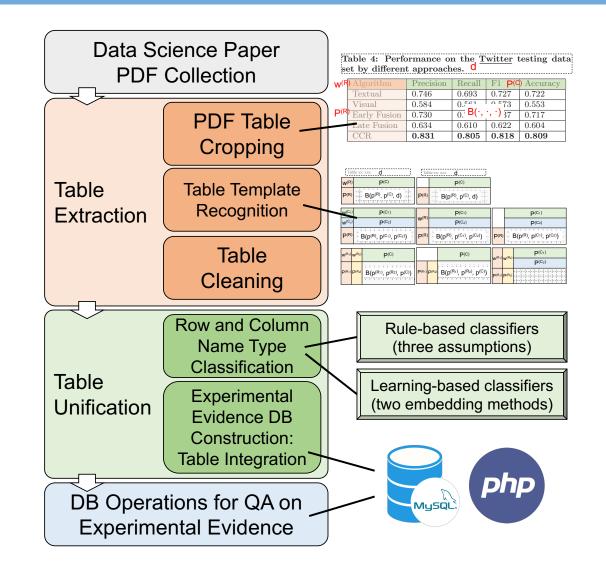
	Table 4: Performance on the Twitter testing dataset by different approaches.										
W ^{(F}) Algorithm	Precision	Recall	F1 P(C) Accuracy						
	Textual	0.746	0.693	0.727	0.722						
_ (5	Visual	0.584		<u>۲3</u>	0.553						
P(F	⁹ Early Fusion	0.730	<u>0.</u> ′ B(∙,	<u>'</u> , ') <u>37</u>	0.717						
	Late Fusion	0.634	0.610	0.622	0.604						
	CCR	0.831	0.805	0.818	0.809						

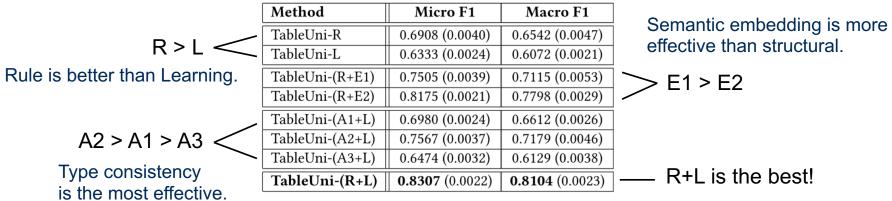

$$\max_{\phi} J_3(\phi) = \sum_{T = [\dots, \mathcal{B}(B_1, B_2, B_3)]} |\cup_{k \in \{1, 2, 3\}} l_k^*|.$$
(10)


Learning-based Classifier

Semantic concept embeddings (BERT^[1])

[Paper text] On the other hand, the proposed <u>CCR</u> model can improve the <u>performance of both precision and recall</u> than the two single models. Meanwhile, <u>CCR</u> performs best <u>among all the</u> <u>methods</u> in terms of both <u>F1 and accuracy score</u>.


Structural concept embeddings (HEBE^[2])


[1] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL 2019.
 [2] Gui et al., Embedding learning with events in heterogeneous information networks. In *TKDE* 2017.

Review: Tablepedia System

Results

	<u>R</u> u	le-based (Assumptions:)		Learning-based	l (Embeddings:)	Ensembled
	<u>A1</u> : Header indication	A2: Type consistency	A3: Completeness	<u>E1</u> : Structural	E2: Semantic]
TableUni-R	 ✓ 	 ✓ 	 ✓ 	×	X	X
TableUni-L	×	×	×	 ✓ 	~	X
TableUni-(R+E1)	 ✓ 	 ✓ 	 ✓ 	 ✓ 	×	 ✓
TableUni-(R+E2)	 ✓ 	 ✓ 	v	×	~	 ✓
TableUni-(A1+L)	 ✓ 	×	×	 ✓ 	 ✓ 	 ✓
TableUni-(A2+L)	×	 ✓ 	X	 ✓ 	~	 ✓
TableUni-(A3+L)	×	×	 ✓ 	 ✓ 	~	 ✓
TableUni-(R+L)	 ✓ 	 ✓ 	v	 ✓ 	~	 ✓

Using all the Five (Three plus Two) is the best!

Results (cont'd)

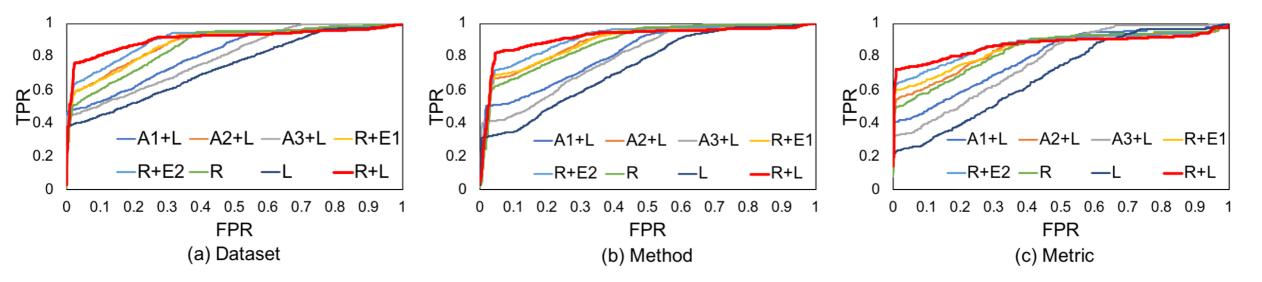


Figure 6: ROC curves comparing the variants of our proposed TableUni methods with respect to the type of classes.

- Rule is better than Learning.
- Type consistency (Rule 2) is the most effective.
- Semantic embedding is more effective than structrual embedding.
- Rule + Learning is the best!

Results (RecSys)

(ACM TOIS 2011)

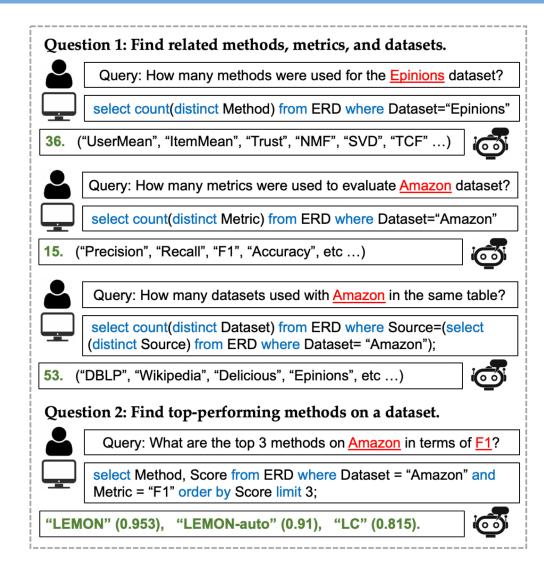
Table III. MAE Comparison with Other Approaches on Epinions Dataset

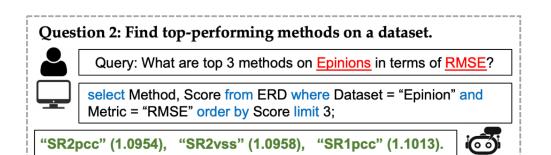
Me	thods	90% Training	80	0% Training	70% Training	60% Training
User	. Mean	0.9294		0.9319	0.9353	0.9384
Item	n Mean	0.8936		0.9115	0.9316	0.9528
Т	rust	0.9005		0.9044	0.9082	0.9153
	NMF	0.8938		0.8975	0.9229	0.9430
5D	SVD	0.8739		0.8946	0.9214	0.9421
5D	PMF	0.8678		0.8946	0.9127	0.9350
	SoRec	0.8442		0.8638	0.8751	0.8948
	NMF	0.8712		0.8951	0.9211	0.9408
10D	SVD	0.8702		0.8921	0.9189	0.9382
10D	PMF	0.8651		0.8886	0.9092	0.9328
	SoRec	0.8404		0.8580	0.8722	0.8921

(ACM TOIS 2011)

Me	thods	90% Training	80% Training	70% Training	60% Training
Use	r Mean	1.1927	1.1968	1.2014	1.2082
Iten	n Mean	1.1678	1.1973	1.2276	1.2505
Т	rust	1.1697	1.1761	1.1797	1.1894
	NMF	1.1649	1.1861	1.2090	1.2311
5D	SVD	1.1635	1.1845	1.2067	1.2298
5D	PMF	1.1583	1.1798	1.2008	1.2271
	SoRec	1.1333	1.1530	1.1690	1.1892
	NMF	1.1621	1.1832	1.2073	1.2294
10D	SVD	1.1600	1.1812	1.2011	1.2268
10D	PMF	1.1544	1.1760	1.1968	1.2230
	SoRec	1.1293	1.1492	1.1660	1.1852

(ACM TIST 2011)


Training	Materia				Dimensio	onality = 5						
Data	Metrics	UserMean	ItemMean	NMF	PMF	TCF	Trust	SoRec	RSTE			
90%	MAE	0.9134	0.9768	0.8738	0.8676	0.9005	0.9054	0.8442	0.8377			
90%	RMSE	1.1688	1.2375	1.1649	1.1575	1.1697	1.1959	1.1333	1.1109			
80%	nor MAE	0.9285	0.9913	0.8975	0.8951	0.9044	0.9221	0.8638	0.8594			
	RMSE	1.1817	1.2584	1.1861	1.1826	1.1761	1.2140	1.1530	1.1346			
Fraining	Materia	etrics UserMeanItemMean NMF PMF TCF Trust SoRec RSTE										
Data	Metrics	UserMean	ItemMean	NMF	PMF	TCF	Trust	SoRec	RSTE			
90%	MAE	0.9134	0.9768	0.8712	0.8651	0.9005	0.9039	0.8404	0.8367			
90%	RMSE	1.1688	1.2375	1.1621	1.1544	1.1697	1.1917	1.1293	1.1094			
80%	MAE	0.9285	0.9913	0.8951	0.8886	0.9044	0.9215	0.8580	0.8537			
80%	RMSE	1.1817	1.2584	1.1832	1.1760	1.1761	1.2132	1.1492	1.1256			


(WSDM 2011)

Dataset	Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	SR1 _{vss}	SR1 _{pcc}	$SR2_{vss}$	SR2 _{pcc}
		MAE	0.6809	0.6288	0.5732	0.5693	0.5643	0.5579	0.5576	0.5548	0.5543
	80%	Improve	18.59%	11.85%	3.30%	2.63%	1.77%	0.0010	0.0010	0.3040	0.004
	0076	RMSE	0.8480	0.7898	0.7225	0.7200	0.7144	0.7026	0.7022	0.6992	0.698
		Improve	17.59%	11.52%	3.28%	2.94%	2.18%	0.1020	0.1044	0.0002	0.000
		MAE	0.6823	0.6300	0.5768	0.5737	0.5698	0.5627	0.5623	0.5597	0.559
Douban	60%	Improve	18.02%	11.22%	3.03%	2.51%	1.84%	0.0021	0.0020	0.0001	0.000
Douban	0070	RMSE	0.8505	0.7926	0.7351	0.7290	0.7207	0.7081	0.7078	0.7046	0.7042
		Improve	17.20%	11.15%	4.20%	3.40%	2.29%	0.1001	0.1010	0.1010	0.104
		MAE	0.6854	0.6317	0.5899	0.5868	0.5767	0.5706	0.5702	0.5690	0.568
	40%	Improve	17.06%	10.00%	3.63%	3.12%	1.42%	0.0100	0.0104	0.0000	0.000
	-1070	RMSE	0.8567	0.7971	0.7482	0.7411	0.7295	0.7172	0.7169	0.7129	0.7125
		Improve	16.83%	10.61%	4.77%	3.86%	2.33%	0.1112	0.7105	0.1120	0.772
		MAE	0.9134	0.9768	0.8712	0.8651	0.8367	0.0000	0.0007	0.0070	0.8256
	90%	Improve	9.61%	15.48%	5.23%	4.57%	1.33%	0.8290	0.8287	0.8258	0.825
	90%	RMSE	1.1688	1.2375	1.1621	1.1544	1.1094	1.0700	1.0790	1.0744	1.073
Epinions		Improve	8.12%	13.22%	7.59%	6.97%	3.20%	1.0792	1.0790	1.0744	1.073
Epinions		MAE	0.9285	0.9913	0.8951	0.8886	0.8537	0.8493	0.8491	0.8447	0.844
	80%	Improve	9.07%	14.83%	5.68%	4.99%	1.10%	0.0493	0.0491	0.0447	0.844
	80%	RMSE	1.1817	1.2584	1.1832	1.1760	1.1256	1.1016	1.1013	1.0958	1.095
		Improve	7.30%	12.95%	7.42%	6.85%	2.68%	1.1010	1.1013	1.0998	1.095

	Α	В	С	D	E
1	Method	Dataset	Metric	Score	Source
10	UserMean	Epinions	MAE	0.9319	TOIS11-paper7-table3
11	UserMean	Epinions	MAE	0.9285	TIST11-paper3-table3
12	UserMean	Epinions	MAE	0.9285	WSDM11-paper12-table5
109	ItemMean	Epinions	RMSE	1.1973	TOIS11-paper7-table4
110	ItemMean	Epinions	RMSE	1.2584	TIST11-paper3-table3
111	ItemMean	Epinions	RMSE	1.2584	WSDM11-paper12-table5
112	Trust	Epinions	RMSE	1.2132	TIST11-paper3-table3
113	NMF	Epinions	RMSE	1.1832	TOIS11-paper7-table4
114	NMF	Epinions	RMSE	1.1832	TIST11-paper3-table3
115	NMF	Epinions	RMSE	1.1832	WSDM11-paper12-table5
116	SVD	Epinions	RMSE	1.1812	TOIS11-paper7-table4
117	TCF	Epinions	RMSE	1.1761	TIST11-paper3-table3
118	PMF	Epinions	RMSE	1.1760	TOIS11-paper7-table4
119	PMF	Epinions	RMSE	1.1760	TIST11-paper3-table3
120	PMF	Epinions	RMSE	1.1760	WSDM11-paper12-table5
121	SoRec	Epinions	RMSE	1.1492	TOIS11-paper7-table4
122	RSTE	Epinions	RMSE	1.1256	TIST11-paper3-table3
123	RSTE	Epinions	RMSE	1.1256	WSDM11-paper12-table5
124	SR1VSS	Epinions	RMSE	1.1016	WSDM11-paper12-table5
125	SR1PCC	Epinions	RMSE	1.1013	WSDM11-paper12-table5
126	SRCVSS	Epinions	RMSE	1.0958	WSDM11-paper12-table5
127	SR2PCC	Epinions	RMSE	1.0954	WSDM11-paper12-table5
169	SoRec	MovieLens	RMSE		34

Results: Asking ERD

Question 3: Find conflicting reported numbers.

Dataset	(%)	SLEEC	FastXML	PfastreXML	PDSparse
AmazonCat	P@1	90.56/89.19	94.02/93.10	86.06/89.94	87.43/89.31
-13K	P@3	76.96/75.17	79.93/78.18	86.06/77.24	87.43/74.03
	P@5	62.63/61.09	64.90/63.38	63.65/63.53	56.70/60.11
Delicious	P@1	47.78/47.03	48.85/43.20	26.66/37.62	37.69/34.37
-200K	P@3	42.05/41.67	42.84/38.68	23.56/35.62	30.16/29.48
	P@5	39.29/38.88	39.83/36.21	23.21/34.03	27.01/27.04
WikiLSHTC	P@1	58.34/55.57	50.01/49.75	57.17/58.10	60.70/61.26
-325K	P@3	36.70/33.06	32.83/33.10	37.03/37.61	39.62/39.48
	P@5	26.45/24.07	24.13/24.45	27.19/27.69	29.20/28.79

Table 1: Our system found inconsistent precision scores reported by two papers [42] (left numbers) and [36] (right numbers) in ACM SIGKDD 2017 Research Track for multilabel classification. Precision differences of bigger than 3% are underlined, which has been able to be claimed as significant improvement on the well-accepted benchmarks.