Scientific Text Mining and Knowledge Graphs

Chapter 1 Part 1: Phrase Mining

Presenter: Jingbo Shang

University of California, San Diego

jshang@ucsd.edu

Why Phrase Mining?

- □ Analyzes US news articles on April 9, 2017
- Before Phrase Mining

- Which "United"?
 - United States?
 - United Parcel Service?
- What's "Dao"?
 - □ A person?
 - A place?

Why Phrase Mining?

- □ Analyzes US news articles on April 9, 2017
- After Phrase Mining

- United Airline
- □ David Dao \rightarrow A person

United Express Flight 3411 incident

Phrase Mining: A Keystone

Phrase mining is a keystone towards understanding texts

- Entities, Relational Phrases, ...
- It can facilitate various applications in Natural Language Processing (NLP), Information Retrieval (IR), Text Mining
 - Document Analysis
 - Indexing in Search Engine
 - Key-Phrases for Topic Modeling
 - Summarization
 - Text-based Predictive Analytics

```
].
```

Quality Phrase Mining from Massive **Domain-Specific** Corpora

- Quality phrase mining seeks to extract a ranked list of phrases with decreasing quality from a large collection of documents
- **Examples:**

Existing NLP-based methods (e.g., noun phrase chunking, parsing) rely on *extensive annotations from domain experts*

TopMine (VLDB'15): Our Unsupervised Pioneer on "Segmentation"

- Statistical signal: Significance score (α)
 - How many standard deviations (σ) away from the mean? $\alpha(A, B) \approx \frac{\operatorname{freq}(A \oplus B) - E[\operatorname{freq}(A \oplus B)]}{\sqrt{\operatorname{freq}(A \oplus B)}}$
- A greedy merge algorithm to segment sentences:
 - $\alpha(A, B) >$ the given threshold \rightarrow "A B" is a phrase (a merge)

SegPhrase (SIGMOD'15): **Quality Estimation using Expert Labels**

Multiple Statistical Signals

Input **Raw Corpus** 4.

Significance score this paper 0 2. $PMI(A, B) = \log \frac{P(A \oplus B)}{P(A)P(B)}$ experiments show 1 3. Chi-square: $\chi^2 = \sum \frac{(O-E)^2}{F}$ np hard 1 Inverse Term Frequency (IDF) 5. Stopword ratio based on 6. Capitalization signals

support vector machine **Quality Estimation Expert-Provided Labels**

Estimated Quality Score for Every Phrase

0.999, support vector machine 0.999, objective function 0.999, source code 0.999, upper bound 0.999, optical flow 0.999, hidden markov model ... 0.851, period doubling 0.851, digital game based learning 0.850, bus architecture 0.850, parabolic partial differential equations ... 0.000, this paper

...

SegPhrase (SIGMOD'15): Phrasal Segmentation using Viterbi Algo

Count **Raw** N-gram **Frequency**: "Markov"+=1, "Markov Blanket"+=1, "Markov Blanket Feature"+=1, ...

Statistical signals (e.g., significance score, PMI) become **more accurate** using rectified frequency

Markov Blanket

Feature Selection

for

Support Vector Machine

(Viterbi Algorithm based on Generative Process & Estimated Quality Scores)

Count Rectified Frequency: "Markov Blanket"+=1, "Feature Selection"+=1, "for"+=1, "Support Vector Machine"+=1

SegPhrase (SIGMOD'15): Quality Estimation \Leftrightarrow Phrasal Segmentation

Count Rectified Frequency: "Markov Blanket"+=1, "Feature Selection"+=1, "for"+=1, "Support Vector Machine"+=1

- Key Ideas of SegPhrase
 - Weak Supervision
 - Unifies multiple stat-signals
 - Text Segmentation
 - Rectifies phrase frequency

SegPhrase (SIGMOD'15): Reliance on Expert-Provided Labels

AutoPhrase (TKDE'18): Automated Phrase Mining without Expert Labels

Multiple Statistical Signals

1. Significance score

2.
$$\mathsf{PMI}(A, B) = \log \frac{P(A \oplus B)}{P(A)P(B)}$$

- 3. Chi-square: $\chi^2 = \sum \frac{(O-E)^2}{E}$
- 4. Inverse Term Frequency (IDF)
- 5. Stopword ratio
- 6. Capitalization signals

Quality Estimation based on Knowledge Bases

Estimated Quality Score for Every Phrase

0.999, support vector machine 0.999, objective function 0.999, source code 0.999, upper bound 0.999, optical flow 0.999, hidden markov model

0.851, period doubling0.851, digital game based learning0.850, bus architecture0.850, parabolic partial differentialequations

0.000, this paper

• • •

Input Raw Corpus

AutoPhrase (TKDE'18): Distant Supervision & its Challenges

A free, clean pool of high-quality phrases

Positive Pool

Knowledge bases are usually *incomplete*

Much more phrases to be discovered from candidates

There is no mention about "low-quality" phrases in knowledge bases

AutoPhrase (TKDE'18): Negative Sampling from Noisy Negative Pool

AutoPhrase (TKDE'18): Sampling + Ensemble → Robust Classifier

Phrase Mining: Empirical Evaluation – Precision Recall Curve

Output: a ranked list of phrases with decreasing quality

Evaluation Process

AutoPhrase (TKDE'18): Cross-Domain Evaluation Results

SegPhrase (SIGMOD'15): Outperformed TopMine (VLDB'15) and many other methods

TF-IDF: Stanford NLP Parser (LREC'16) + Ranked by TF-IDF

TextRank (ACL'04): Stanford NLP Parser (LREC'16) + Ranked by TextRank

AutoPhrase (TKDE'18): Cross-Language Evaluation Results

WrapSegPhrase: non-English characters \rightarrow English letters & SegPhrase

JiebaSeg: Specifically for Chinese; Dictionaries & Hidden Markov Models

AnsjSeg: Specifically for Chinese; Dictionaries & Conditional Random Fields

AutoPhrase (TKDE'18): Results of Chinese Phrases from Wiki Articles

Phrase's Rank	Phrase	Translation (Explanation)
1	江苏_舜_天	(the name of a soccer team)
2	苦_艾_酒	Absinthe
3	白发_魔_女	(the name of a novel/TV-series)
_		

□ The size of positive pool is about 29,000

□ AutoPhrase finds more than 116,000 quality phrases (quality score > 0.5)

□ Much more!

99,995	恒_天然	Fonterra (a company)
99,996	中国_作家_协会_副_主席	The Vice President of Writers Association of China
99,997	维他命_b	Vitamin B
99,998	舆论_导向	controlled guidance of the media

Phrase Mining: Impact in Various Domains

http://engineering.tripadvisor.com/using-nlp-to-find-interesting-collections-of-hotels/

Scientific Text Mining and Knowledge Graphs

Chapter 1 Part 2: Named Entity Recognition and Neural Language Models

Presenter: Jingbo Shang

University of California, San Diego

jshang@ucsd.edu

What's Named Entity Recognition?

- Wikipedia:
 - Named-entity recognition (NER) is a subtask of information extraction (IE) that seeks to locate and classify named entities in text into predefined categories.
 - □ In IE, A named entity is a real-world object.
- Example
 - Input
 - □ Jim bought 300 shares of Acme Corp. in 2006.
 - Output
 - □ [Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organization} in [2006]_{Time}.

Supervised Methods: Training Data

- Sequence labeling framework
- Two popular schemes
 - BIO: Begin, In, Out
 - BIOES: Begin, In, Out, End, Singleton
 - □ BIOES is arguably better than BIO (Ratinov and Roth, ACL 09)

Example:

LABELS: [Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organization} in [2006]_{Time}. bought 300 shares of Acme Corp. TOKNES: Jim in 2006 • BIO: B-PER 0 0 0 B-ORG I-ORG 0 B-Time O 0 0 0 0 B-ORG E-ORG 0 0 S-Time **BIOES:** S-PER 0

Supervised Methods: Neural Models

Two pioneer models

- LSTM-CRF (Lample et al., NAACL'16)
- LSTM-CNN-CRF (Ma and Hovy, ACL'16)

	LSTM-CRF	LSTM-CNN-CRF
Word-Level	Bidirectional LSTMs	Bidirection LSTMs
Character-Level	Bidirectional LSTMs	Convolutional NN

The first neural model that outperforms the models based on handcrafted features

"Data-Driven" Philosophy

☐ Key

- Enhance NER performance without introducing any additional human annotations
- Questions
 - Can massive raw texts help?
 - Can dictionaries help?
 - Are human annotations always correct?
 - Is Tokenizer always good?

Can massive raw texts help?

Can dictionaries help?

Word Embedding \rightarrow Language Model (LM)

□ Using Language Model for better representations:

- Word-level Language Model:
 - □ ELMo (Peters et al., NAACL'18, best paper)
 - □ LD-Net (Liu et al., EMNLP'18)
- □ <u>Char-level</u> Language Model:
 - LM-LSTM-CRF (Liu et al., AAAI' 18)
 - □ Flair (Akbik et al., COLING'18)
- Hybrid Language Model:
 - Cross View Training (Clark et al., EMNLP' 2018)
 - BERT (Devlin et al., NAACL'19, best paper)

What's (Neural) Language Model?

- Describing the generation of text:
 - predicting the next word based on previous contexts

Pros:

- Does not require any human annotations
 - Nearly unlimited training data!
- Resulting models can generate sentences of an unexpectedly high quality

Neural LM: Example Generations

Char-by-Char Markdown Generations:

"See also": [[List of ethical consent processing]]

```
== See also ==
```

*[[lender dome of the ED]]

*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]

Neural LM: Example Generations

Deep "Donald Trump": Mimic President Trump

We have competence. Our people don't need anybody. I have smart people.

11:46 AM - 3 Mar 2016

DeepDrumpf

@DeepDrumpf

I'm a Neural Network trained on Trump's transcripts. Priming text in []s. Donate (gofundme.com/deepdrumpf) to interact! Created by @hayesbh.

📰 Joined March 2016

7 Following 26K Followers

Fooled many twitter users

Follow

 \sim

LM-LSTM-CRF: Co-Train Neural LM

Propose to use Character-level language model as a Co-Training objective

Why character-level?

More efficient & More robust to pre-processing

ELMo: Pre-train Word-Level Neural LM

Add ELMo at the input of RNN. For some tasks (SNLI, SQuAD), including ELMo at the output brings further improvements

- Key points:
 - **Freeze** the weight of the biLM
 - Regularization are necessary

LD-Net: An efficient version of ELMo

Make the	e con	textua	alized		outout	0	itout
represen	t eff i	icient	without	the Recurrent Unit:			
Network (PTLMs Ind.#)	Avg. ppl	#FLOPs $(\cdot 10^6)$	F_1 score (avg \pm std)			Dropout	
NoLM (/)	/	3	$90.78 {\pm} 0.24$	the Dropped		\rightarrow	/{→
O-ELMo (3)	39.70	607†	92.22±0.10	Recurrent Unit:			
R-ELMo (6)	40.27	215	91.99±0.24	↓ (Internet internet			
R-ELMo (7)	48.85	135	$91.54{\pm}0.10$				
TagLM (5)	47.50	87†	91.62±0.23				
LD-Net (8)	45.14	98	91.76±0.18			\rightarrow	
LD-Net (9)	50.06	98	91.86±0.15	the Input of the Recurrent Unit:			
I.D-Net (8*)	origin	98	91.95		input		input
	pruned	6	91.55 ± 0.06		(a)		(b)
LD-Net (9*)	origin pruned	98 6	92.03 91.84±0.14	·			32

Flair: Pre-Train Neural LM at All Levels

- Even for character-level language model, pre-training is very important.
- The structure is the same with LM-LSTM-CRF, the difference is the pretraining conducted on additional training corpus.

			B-PER	E-PER	0	0
Task	PROPOSED	Previous best				
NER English	93.09 ±0.12	92.22±0.1 (Peters et al., 2018)		Sequence Labeling M	[odel	
NER German	88.32 ±0.2	78.76 (Lample et al., 2016)	r _{George}	r _{Washington}	r _{was}	r _{born}
Chunking	96.72 ±0.05	96.37±0.05				
PoS tagging	97.85 ±0.01	(Peters et al., 2017) 97.64 (Choi, 2016)		Character Language		

BERT: Introduce Transformer

- Introduce Transformers, use masked language model + next sentence prediction
- Conduct fine-tuning after pre-training on each task (necessary for sentence-level tasks, NER is a word level task).

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERTLARGE	96.6	92.8
BERT _{BASE}	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.³⁴

New State-of-the-arts

Using Language Model for better representations:	F1 on CoNLL03
Word-level Language Model:	
ELMo (Peters et al., NAACL'18, best paper)	92.2
LD-Net (Liu et al., EMNLP'18)	92.0, ~5X faster
Char-level Language Model:	
LM-LSTM-CRF (Liu et al., AAAI' 18)	91.4
Flair (Akbik et al., COLING'18)	93.1
Hybrid Language Model:	
Cross View Training (Clark et al., EMNLP' 2018)	92.6
BERT (Devlin et al., NAACL'19, best paper)	92.4 / 92.8

- \Box Can massive raw texts help? \rightarrow Neural language model
- Can dictionaries help?

Distantly Supervised NER

Input

- Unlabeled Raw Texts
- An Entity Dictionary
 - entity type, canonical name, [synonyms_1, synonyms_2, ..., synonyms_k]

Output

- A NER model to recognize the entities of the entity types appeared in the given dictionary.
 - □ Note that the entities to be recognized can be unseen entities.

Distantly Supervised NER Methods

String-match / rule-based distant supervision generation

- AutoEntity, SwellShark, ClusType, ...
 - Leave the entity span detection to experts
 - POS Tag Rule-based (e.g., regular expressions)

AutoNER

A novel "Tie-or-Break" labeling scheme + tailored neural model

SwellShark: Distantly Supervised Typing

- Data Programming for Typing
 Entity Span Detection: Regular expressions based on part-of-speech (POS) tags
 - Requires expert efforts
 - Candidate Generators

AutoNER: Dual Dictionaries

- A core dictionary
 - Leads to high-precision but low-recall matches
- □ A "full" dictionary
 - Leads to high-recall but low-precision matches
 - Introduce out-of-dictionary high-quality phrases as new entities
 - Their types are "unknown"
 - □ It could be any IOBES + any type

AutoNER: Fuzzy-LSTM-CRF Baseline

Figure 1: The illustration of the Fuzzy CRF layer with modified IOBES tagging scheme. The named entity types are {Chemical, Disease}. "indomethacin" is a matched Chemical entity and "prostaglandin synthesis" is an unknown-typed high-quality phrase. Paths from Start to End marked as purple form all possible label sequences given the distant supervision.

AutoNER: "Tie or Break"

- Instead of labeling each token, we choose to tag the connection between two adjacent tokens.
- For every two adjacent tokens, the connection between them is labeled as
 - (1) **Tie**, when the two tokens are matched to the same entity
 - (2) Unknown, if at least one of the tokens belongs to an unknown-typed high-quality phrase;
 - (3) **Break**, otherwise.

AutoNER: Tailored Neural Model

Figure 2: The illustration of AutoNER with Tie or Break tagging scheme. The named entity type is {AspectTerm}. "ceramic unibody" is a matched AspectTerm entity and "8GB RAM" is an unknown-typed high-quality phrase. Unknown labels will be skipped during the model training.

Comparison – Biomedical Domain

Table 2: [Biomedical Domain] NER Performance Comparison. The supervised benchmarks on the BC5CDR and NCBI-Disease datasets are LM-LSTM-CRF and LSTM-CRF respectively (Wang et al., 2018). SwellShark has no annotated data, but for entity span extraction, it requires pre-trained POS taggers and extra human efforts of designing POS tag-based regular expressions and/or hand-tuning for special cases.

Method	Human Effort	BC5CDR			NCBI-Disease		
	other than Dictionary		Rec	F1	Pre	Rec	F1
Supervised Benchmark	Gold Annotations	88.84	85.16	86.96	86.11	85.49	85.80
SwellShark	Regex Design + Special Case Tuning	86.11	82.39	84.21	81.6	80.1	80.8
	Regex Design	84.98	83.49	84.23	64.7	69.7	67.1
Dictionary Match		93.93	58.35	71.98	90.59	56.15	69.32
Fuzzy-LSTM-CRF	None	88.27	76.75	82.11	79.85	67.71	73.28
AutoNER	AutoNER		81.00	84.8	79.42	71.98	75.52

Summary & Q&A

- Using neural language model, massive raw texts can help!
- □ High-quality dictionaries can help!

Scientific Text Mining and Knowledge Graphs

Chapter 1 Part 3: Relation Extraction and Attribute Discovery

Presenter: Jingbo Shang

University of California, San Diego

jshang@ucsd.edu

Meta-Pattern Mining for Information Extraction

Meta-Pattern

- \$PERSON (age \$DIGITS)
 - \$PERSON has an attribute "age"
 - \$DIGITS is the value of this attribute
- Applications
 - Attribute Discovery: both attribute name and attribute value
 - Relation Extraction: relation between entities
 - Named Entity Recognition: entity boundaries & types
 - Using discovered meta-patterns to match new raw texts

\$PERSON meets **\$PERSON**

A "meet" relation between two people

Previous Work on Finding E-A-V and **Typed Patterns**

- Task 1: Finding E-A-V at the Instance Level
 - Stanford OpenIE [ACL'15], Al²'s Open IE-Ollie [EMNLP'12]
 - Learn syntactic and lexical patterns of expressing relations
 - Input: "President Blaise Compaoré's government of Burkina Faso was founded..."
 - Output: (President Blaise Compaoré, have, government of Burkina Faso) 😕
- Task 2: Finding Typed Patterns
 - Google's Biperpedia+ARI [VLDB'14, WWW'16], ReNoun [EMNLP'15]:

"president of united states"

"Barack Obama, President of U.S.,"

"A of E", "E 's A", "E A", "A, E"

Ignore entity-typing information!

"O, A of S,", "S A O"

Query log: Highly constrained and unavailable

- Input: "...Sunday night, Burkina Faso..." and the "A, E" pattern
- Output: (\$COUNTRY, Sunday night) 😕

MetaPAD: Meta Pattern-driven Attribute Discovery from Massive Text Corpora

 Meng Jiang, Jingbo Shang, Xiang Ren, Taylor Cassidy, Lance Kaplan, Timothy Hanratty, and Jiawei Han, "MetaPAD: Meta Pattern-driven Attribute Discovery from Massive Text Corpora", KDD 2017

Motivation:

MetaPAD: Meta Pattern-driven Attribute Discovery from Massive Text Corpora

Attribute Discovery: Two tasks

Task 1: (entity, attribute name, attribute value) (Burkina Faso, president, Blaise Compaoré) (Burkina Faso, population, 17 million) (Blaise Compaoré, age, 65) Task 2: (entity type, attribute name) (\$COUNTRY, president) (\$COUNTRY, population) (\$PERSON, age) Type-level

Our Meta-Pattern Methodology

Pattern Discovery by Phrase Mining and Entity Typing

"President Blaise Compaoré's government of Burkina Faso was founded ..."

"president \$PERSON.POLITICIAN's government of \$LOCATION.COUNTRY was founded ..."

Meta-Pattern Quality Assessment and Segmentation

A rich set of features:

- ✓Frequency
- ✓ Concordance: "\$PERSON's wife"
- ✓ Completeness: "\$Country president" vs. "\$Country president \$Politician"

✓ Informativeness: "\$Person and \$Person " vs. "\$Person 's wife, \$Person"

Regression Q(.): random forest with only 300 labels

Grouping Synonymous Patterns

Adjusting Types in Meta Patterns for Appropriate Granularity

\$PERSON, \$DIGIT,

\$PERSON's age is \$DIGIT

\$Person, a \$Digit -year-old

\$COUNTRY president \$POLITICIAN president \$POLITICIAN of \$COUNTRY

Results: Patterns, Entities and Attribute Values in News Corpus

Meta patterns	Entity	Attribute value
\$COUNTRY President \$POLITICIAN	United States	Barack Obama
\$COUNTRY's president \$POLITICIAN	Russia	Vladimir Putin
 \$POLITICIAN's government of \$COUNTRY	France	Francois Hollande
	Burkina Faso	Blaise Compaoré
Meta patterns	Entity	Attribute value
\$COMPANY CEO \$PERSON	Apple	Tim Cook
\$COMPANY chief executive \$Person	Facebook	Mark Zuckerberg
SPERSON, THE SCOMPANY CEO,	Hewlett-Packard	Carly Fiorina
\$COMPANY former CEO \$PERSON		
\$Person, the \$Company former CEO,	Infor	Charles Phillips
	Afghan Citadel	Rova Mahboob

Patterns and Entities Found in Medical Science Corpus

Meta patterns	Entity	Attribute value
\$TREATMENT was used to treat \$DISEASE	zoledronic acid therapy	Paget's disease of bone
\$Disease using the \$TREATMENT	bisphosphonates	osteoporosis
\$TREATMENT has been used to treat \$Disease \$TREATMENT of patients with \$Disease 	calcitonin	Paget's disease of bone
	calcitonin	osteoporosis
Meta patterns	Entity	Attribute value
SPACTERIA Was resistant to SANTIRIOTICS	corvnobactorium	contomicin
\$BACTERIA was resistant to \$ANTIBIOTICS \$BACTERIA are resistant to \$ANTIBIOTICS	striatum BM4687	gentamicin
\$BACTERIA was resistant to \$ANTIBIOTICS \$BACTERIA are resistant to \$ANTIBIOTICS \$BACTERIA is the most resistant to \$ANTIBIOTICS 	striatum BM4687 corynebacterium striatum BM4687	tobramycin
 \$BACTERIA was resistant to \$ANTIBIOTICS \$BACTERIA are resistant to \$ANTIBIOTICS \$BACTERIA is the most resistant to \$ANTIBIOTICS \$BACTERIA, particularly those resistant to \$ANTIBIOTICS 	striatum BM4687 corynebacterium striatum BM4687 methicillin-susceptible S aureus	tobramycin vancomycin
 \$BACTERIA was resistant to \$ANTIBIOTICS \$BACTERIA are resistant to \$ANTIBIOTICS \$BACTERIA is the most resistant to \$ANTIBIOTICS \$BACTERIA, particularly those resistant to \$ANTIBIOTICS 	striatum BM4687 corynebacterium striatum BM4687 methicillin-susceptible S aureus multidrug-resistant enterobacteriaceae	tobramycin vancomycin gentamicin

...

...

Further Enhancements of MetaPAD

TruePIE

- Q. Li, M. Jiang, X. Zhang, M. Qu, T. Hanratty, J. Gao, and J. Han, "TruePIE: Discovering Reliable Patterns in Pattern-Based Information Extraction", KDD'18
- Discover *reliable* patterns and extract quality EAV-tuples from text data

WW-PIE

- Qi Li, Xuan Wang, Yu Zhang, Fei Ling, Cathy H. Wu, Jiawei Han, "Pattern Discovery for Wide-Window Open Information Extraction in Biomedical Literature", BIBM'18
- Leverage parsing structures to mine *long-distance* patterns

PENNER: Pattern-Enhanced Nested Named Entity Recognition in Biomedical Literature

- Xuan Wang*, Yu Zhang*, Qi Li, Cathy H. Wu, Jiawei Han, "PENNER: Pattern-enhanced Nested Named Entity Recognition in Biomedical Literature", BIBM'18
- □ What is a nested entity structure?
 - **Example:** PID: 10190572:
 - "... although each of the agents alone caused only slight increase in the [alanine]_{CHEMICAL} aminotransferase]_{PROTEIN} activity."
 - PubTator recognizes "alanine" as a CHEMICAL but misses "alanine aminotransferase" as a PROTEIN
- Nested entities are very important!
 - □ 17% of the entities in the GENIA dataset are embedded with another entity
 - Many downstream tasks require us to detect not just the inner-most entity

PENNER: Key Ideas of Using Meta-Pattern

- Nested BioNER with very weak supervision
- Idea: Nested structure as a pattern-level phenomenon
 CHEMICAL aminotransferase = PROTEIN
 GENE mRNA release = PROCESS
- **Framework**
 - Taking a corpus pre-tagged by any flat NER tool as input
 - **Unsupervised** meta-pattern extraction
 - **Few-shot** nested entity recognition for each type
- Evaluation
 - Outperforming baselines in both meta-pattern extraction and nested NER
 - Detecting new entity types with few seeds
 - Improving annotation results over PubTator

Framework Overview

Weakly-supervised Pattern Expansion

- Finding new patterns with few user-specified seeds
- Method: SetExpan (Shen et al., ECML-PKDD 2017): Skip-gram + Rank Ensemble

Expanding Multiple Sets Simultaneously

- SetExpan essentially combines frequency and context similarity
- Unlike entities, some meta-patterns may be extremely frequent (e.g., "CHEMICAL")
- Utilizing the mutual exclusiveness of seed sets

Pattern-Level Task: Meta-Pattern Extraction

	Seed	{GENE, GENE peroxidase}	{CHEMICAL, GENE agonist}	{DISEASE, cellular DISEASE}	{SPECIES, female SPECIES}
	1	unassigned : GENE	CHEMICAL receptor modulator (serm)	DISEASE vera	fischer SPECIES
	2	CHEMICAL phosphatase	antagonist of CHEMICAL	potential for DISEASE	SPECIES and adult
	3	(CHEMICAL) release	offspring of SPECIES	GENE translocation	exposure to CHEMICAL or
Embodding	4	SPECIES cardiomyocyte	CHEMICAL oxidase (SPECIES and adult	SPECIES in vivo
LINDEGUINg	5	potential against DISEASE	DISEASE chemopreventive agent	growth and DISEASE	CHEMICAL protect
•	6	GENE inducer	GENE receptor activity	a common DISEASE	CHEMICAL interfere
	7	effect and mechanism of CHEMICAL	antagonist (CHEMICAL)	rare DISEASE	a cohort of SPECIES
	8	inducer of GENE	CHEMICAL blocker	detection of DISEASE	SPECIES albino
	9	(GENE) antagonist	CHEMICAL substituent	DISEASE as well as	CHEMICAL exposure,
	10	GENE level and	CHEMICAL vapor	progression and DISEASE	the detrimental effect of CHEMICAL
	Seed	{GENE, GENE peroxidase}	{CHEMICAL, GENE agonist}	{DISEASE, cellular DISEASE}	{SPECIES, female SPECIES}
	1	SPECIES telomerase	GENE	hepatic DISEASE	male SPECIES
	2	CHEMICAL	DISEASE chemopreventive agent	degradation of GENE	DISEASE
	3	DISEASE	DISEASE	dermal DISEASE	CHEMICAL
SetExpan	4	CHEMICAL acetyltransferase	CHEMICAL chelation	clinical DISEASE	DISEASE cell
SecExpan	5	CHEMICAL aminotransferase	SPECIES	GENE phosphorylation	GENE
	6	SPECIES	GENE antagonist	-	SPECIES cell
	7	CHEMICAL hydrolase	DISEASE cell	-	pregnant SPECIES
	8	GENE kinase	underlying mechanism of CHEMICAL	-	adult SPECIES
	9	CHEMICAL kinase	CHEMICAL exclusion	-	CHEMICAL channel
	10	CHEMICAL influx	10 m CHEMICAL	-	DISEASE cell line
	Seed	{GENE, GENE peroxidase}	{CHEMICAL, GENE agonist}	{DISEASE, cellular DISEASE}	{SPECIES, female SPECIES}
	1	SPECIES telomerase	DISEASE chemopreventive agent	hepatic DISEASE	male SPECIES
	2	CHEMICAL aminotransferase	CHEMICAL chelation	degradation of GENE	DISEASE cell
	3	GENE promoter	GENE antagonist	dermal DISEASE	pregnant SPECIES
PENNER	4	CHEMICAL hydrolase	-	clinical DISEASE	adult SPECIES
	5	CHEMICAL oxidase	-	GENE phosphorylation	SPECIES hepatocyte
	6	CHEMICAL acetyltransferase	-	-	SPECIES embryo
	7	GENE kinase	-	-	normal SPECIES
	8	CHEMICAL kinase	-	-	juvenile SPECIES
	9	CHEMICAL peroxidase	-	-	adult male SPECIES
	10	CHEMICAL dismutase	-	-	f334 SPECIES 64

Entity-level Task: Nested NER

"Precision": NDCG of the ranking list of expanded entities

DCG _p =	$=\sum_{i=1}^p rac{2^{rel_i}-1}{\log_2(i+1)}$	IDCG _p =	$= \sum_{i=1}^{ REL } rac{2^{rel_i}}{\log_2(i+1)}$	$\frac{-1}{+1}$ nDC	$G_{p} = \frac{DC}{IDC}$	$\frac{G_p}{G_p}$
		GENE	CHEMICAL	DISEASE	SPECIES	
	Embedding [22]	0.139	0.580	0.073	0.315	
	SetExpan [26]	0.602	0.312	0.754	0.417	
	PENNER	1.000	1.000	0.754	0.776	

"Recall": Number of correct instances

	GENE	CHEMICAL	DISEASE	SPECIES
Embedding [22]	79	139	61	45
SetExpan [26]	1734	458	184	2211
PENNER	5254	458	184	3212

- **Embedding** does not consider frequency—Infrequent patterns may have inaccurate embeddings
- **SetExpan** does not exploit mutual exclusiveness—Extremely frequent patterns may cause semantic drift during expansion

Entity-level Task: Nested NER

Detecting Biological Process and Treatment entities using only two seeds!

Seed	{GENE upregulation, GENE	{CHEMICAL injection,
	downregulation}	CHEMICAL inhalation}
1	GENE expression	CHEMICAL treatment
2	GENE phosphorylation	CHEMICAL administration
3	the development of DISEASE	CHEMICAL exposure
4	GENE induction	treatment with CHEMICAL
5	CHEMICAL action	exposure to CHEMICAL
6	identification of GENE	administration of CHEMICAL
7	GENE suppression	pretreatment with CHEMICAL
8	DISEASE reduction	CHEMICAL pretreatment
9	CHEMICAL production	-
10	GENE activity	-

Fine-grained flat NER may further improve the performance.

E.g., pattern1: CHEMICAL treatment (Treatment)
 instance: CHEMICAL = resveratrol, simvastatin, quercetin, ... (drug)
 pattern2: CHEMICAL exposure (symptom rather than treatment)
 instance: CHEMICAL = lead, mercury, hydrofluoric acid, ... (toxic)

Comparison with PubTator

Nested Structure + New Entity Types

PMID: 15820610				
PubTator	The aim of the present study was to determine the effect of HRT on the activities of an antioxidant enzyme [superoxide] _{CHEMICAL} dismutase			
	(SOD) and aminotransferases like [alanine] _{CHEMICAL} aminotransferase (Ala-AT) and [aspartate] _{CHEMICAL} aminotransferase in different age			
	groups			
PENNER	The aim of the present study was to determine the effect of HRT on the activities of an antioxidant enzyme [[superoxide] _{CHEMICAL}			
	dismutase] _{GENE} (SOD) and aminotransferases like [[alanine] _{CHEMICAL} aminotransferase] _{GENE} (Ala-AT) and [[aspartate] _{CHEMICAL}			
	aminotransferase] _{GENE} in different age groups			
PMID: 10919993				
PubTator	Mitogen-activated protein (MAP) kinase [Erk1/2] _{GENE} antagonist mainly inhibited the release of [MCP-1] _{GENE} , whereas MAP kinase			
	[p38] _{GENE} antagonist mainly suppressed the release of [IL-8] _{GENE} and [RANTES] _{GENE} .			
PENNER	Mitogen-activated protein (MAP) kinase [[Erk1/2] _{GENE} antagonist] _{CHEMICAL} mainly inhibited the release of [MCP-1] _{GENE} , whereas MAP			
	kinase [[p38] _{GENE} antagonist] _{CHEMICAL} mainly suppressed the release of [IL-8] _{GENE} and [RANTES] _{GENE} .			
PMID: 21266192				
PubTator	it suppressed [STAT3] _{GENE} and [STAT5] _{GENE} phosphorylation in HS-578T cells, whereas it up-regulated [STAT1] _{GENE} phosphorylation			
	and down-regulated [STAT5] _{GENE} phosphorylation in MCF-7 cells.			
PENNER	it suppressed [STAT3] _{GENE} and [[STAT5] _{GENE} phosphorylation] _{PROCESS} in HS-578T cells, whereas it up-regulated [[STAT1] _{GENE}			
	phosphorylation] _{PROCESS} and down-regulated [[STAT5] _{GENE} phosphorylation] _{PROCESS} in MCF-7 cells.			
PMID: 10498651				
PubTator	[COL1A2] _{GENE} expression was decreased by [vitamin E] _{CHEMICAL} treatment or transfection with [manganese superoxide] _{CHEMICAL}			
	dismutase, and was further increased after treatment with [L-buthionine sulfoximine] _{CHEMICAL}			
PENNER	[[COL1A2] _{GENE} expression] _{PROCESS} was decreased by [[vitamin E] _{CHEMICAL} treatment] _{TREATMENT} or transfection with [[manganese			
	superoxide] _{CHEMICAL} dismutase] _{GENE} , and was further increased after [treatment with [L-buthionine sulfoximine] _{CHEMICAL}] _{TREATMENT}			