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Massive Unstructured Text Data
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Massive Unstructured Text Data
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Goal: Texts =2 Knowledge & Insights

a Traditional methods rely on extensive
annotations from domain experts
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Q This tutorial focuses on an automatic way
a “Automatic” — using public knowledge bases only



An Example: BioNLP

Abbreviation Server Textpresso
GOAnNnotator
AliasServer ABNER| |[XplorMed
iProLINK
GAPSCORE
Information LOCkey
|| KEX Biological extraction and text 2
AbGe"e/ NER mining of protein BioRAT
NLProt annotations KAT
ARGH GeneScene
Yapex BioNLP : PreBIND
and information i ,
GEISHA retrieval in v relatiog HeP
PubGene biology ' PathwayFinder
MedMiner Chilibot
PubMatrix : GeneWays
NDPG SoI KinasePathwayDB
— services
microGENIE
PubMed Entrez MedBlast
NPG search CrossRef | (MyNCBI BioMail
SAWTED
Google scholar PubCrawler




COVID-19 Research

30000 -

Angiotensin-converting enzyme 2 GENE_OR_GENOME ( ACE2 GENE_OR_GENOME ) as a
28000 - SARS-CoV-2 CORONAVIRUS receptor: molecular mechanisms and potential therapeutic target.
SARS-CoV-2 CORONAVIRUS has been sequenced [3]. A phylogenetic'EVOLEUTION analysis
[3, 4] found a bat WILDLIFE origin for the SARS-CoV-2 CORONAVIRUS. There is a diversity of
26000 - possible intermediate hosts for SARS-CoV-2 CORONAVIRUS, including pangolins WILDLIFE,
but not TICCIEUKARYOTE and EISIEUKARYOTE [5]. There are many similarities of SARS-
CoV-2 CORONAVIRUS with the original SARS-CoV. CORONAVIRUS. Using computer
24000 - modeling, Xu et al. [6] found that the SPKENPFOIEISIGENESORIGENONE of SARS-CoV-2!
CORONAVIRUS and SARS-CoV CORONAVIRUS have almost identical 3-D structures in the
receptor binding domain that maintains Van der Waals forces PHYSICAL_SCIENCE. SARS®

22000 - CoV/'spike " proteins ' GENEZORIGENOME has a strong binding affinity to human ACE2
GENE_OR_GENOME, based on biochemical interaction studies and crystal structure analysis

[7]. SARS-CoV-2 CORONAVIRUS and SARS-CoV spike proteins GENE_OR_GENOME share

20000 - identity in amino acid sequences and ......
éllllllglllllll;rllllll'_|||||||lclollllllélrllllll‘_l‘llllllcgllllllul’lll Scientific Named Entity Recognition and Typing
< O O O H O © O ©

The Growing Number of COVID-19 Papers at PubMed

Wang et al. “COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation” 7



Knowledge Graphs in COVID-19 Research
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Drug Repurposing
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Two Chapters

« Chapter 1: Mining Structures from Scientific Text
« Phrase mining -

Concept recognition (Named entity recognition) . shang

Language models

Relation and attribute extraction

Conditional statement extraction

Experimental evidence extraction

« Chapter 2: Constructing and Learning Scientific Knowledge Graphs

- Jiang

« Taxonomy construction — Shang
* Knowledge graph construction
» Learning KG for literature search Jiang

» Learning KG for scientific text generation
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