

Tutorial: Data-Driven Approaches towards Malicious Behavior Modeling

Meng Jiang University of Notre Dame

Srijan Kumar Stanford University

Christos Faloutsos Carnegie Mellon University

V.S. Subrahmanian University of Maryland, College Park

Tutorial link: http://bit.ly/kdd2017

Outline

Conclusions and future directions

Tutorial link: http://bit.ly/kdd2017

Suspiciousness and Density

- What is worth of inspections in our data?
- Suspiciousness: tending to cause or excite suspicion
 - Unexpected high density

- ...

- Suspicious **density** of user behaviors in applications
 - Ill-gotten Likes: Facebook, etc.
 - Zombie followers: Twitter, Weibo, etc.
 - Social spam/fake reviews: Twitter, Weibo, Amazon, etc.
 - Advertising campaigns: Twitter, Weibo, etc.

... Social Spam, Social Link Farming

Meng Jiang, Peng Cui, and Christos Faloutsos. "Suspicious behavior detection: current trends and future directions." **IEEE Intelligent Systems**, 2016. (Survey paper)

1. III-gotten Facebook Likes

Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos. "Copycatch: stopping group attacks by spotting lockstep behavior in social networks", WWW 2013.

Density in Temporal Bipartite Graph

Beutel, et al. (WWW 2013)

CopyCatch: Seed + Search

• "Temporal Bipartite Core": n users, m pages, ρ ,

7

CopyCatch: Deployed in Facebook

2. Twitter's Zombie Followers

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. "CatchSync: Catching Synchronized Behavior in Large Directed Graphs", KDD 2014 **Best Paper Finalist**.

Catching Zombie Followers

Stringhini et al. NDSS'13; Yang and Wilson et al. TKDD'14; Viswanath and Bashir et al. USENIX Security Symposium'14] Poor accuracy (**serious complaints** from users)

Is this account a zombie follower???

@xAsherzx

A

and others

others

Find friends

Trends · Change #ThatsContinental

#2017in3words

#nationalbaconday 5.915 Tweets

#NewYearsEveEve

26.1K Tweets

0 EQ1 Tweete

"Density" in Directed Graph

Large ("who-followswhom") directed graphs

> Knowledge of differences between normal and zombie followers

"Density" in Directed Graph

Large ("who-followswhom") directed graphs

> Knowledge of differences between normal and zombie followers

Behavioral theory (Think what they have to do, not what they can do!)

Distort the graph structure?

Observation from the graph data

Algorithm: Catching zombie followers

Out-Degree Distributions: Power Law Expected

Power-law distributions in networks

Spikes!

Jiang, et al. (KDD 2014)

How We/They Connect to Our/Their Followees

The HITS algorithm. Kleinberg. "Authoritative sources in a hyperlinked environment." JACM'99.

Jiang, et al. (KDD 2014)

How We/They Connect to Our/Their Followees

How We/They Connect to Our/Their Followees

Definition: Synchronicity

Definition: Normality

When is the Synchronicity Too High?

Problem: Given a normality value (n) of a follower, find the minimal synchronicity value (s_{min}).

Proof

Proof

Lagrange multiplier:

 $\begin{array}{l} \mbox{minimize } s(f_g) = \sum f_g{}^2 \\ \mbox{subject to } \sum f_g = 1, \ \sum f_g b_g = n \\ \mbox{Lagrange function:} \\ F(f_g, \ \lambda, \ \mu) = (\sum f_g{}^2) + \lambda \ (\sum f_g - 1) + \mu \ (\sum f_g b_g - n) \\ \mbox{Gradients:} \end{array}$

$$\begin{cases} \nabla f_{g}F = 2 f_{g} + \lambda + \mu b_{g} = 0 \\ \nabla \lambda F = \sum f_{g} - 1 = 0 \\ \nabla \mu F = \sum f_{g}b_{g} - n = 0 \\ 2 + \lambda G + \mu = 0 \\ 2 n + \lambda + \mu s_{b} = 0 \\ 2 s_{min} + \lambda + \mu n = 0 \end{cases} \xrightarrow{\times b_{g} \sum} x f_{g} \sum x f_{$$

Jiang, et al. (KDD 2014)

23

Accuracy: Complementary with Content-based Methods (SPOT)

Jiang, et al. (KDD 2014)

The Distribution was Recovered!

3. Social Spam

 Problem definition: Given multidimensional behavioral data of spatiotemporal contexts, find suspicious behaviors.

Dataset		Dimensi	on/Mode		Mass	
Weibo's	User	RootID	IP	Time (min)	#retweet	
Retweeting	29.5M	19.8M	27.8M	56.9K	211.7M	
Weibo's	User	Hashtag	IP	Time (min)	#tweet	
Trending (Hashtag)	81.2M	1.6M	47.7M	56.9K	276.9M	
Network	Src-IP	Dest-IP	Port	Time (sec)	#packet	
attacks (LBNL)	2,345	2,355	6,055	3,610	230,836	

Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, Christos Faloutsos. "Spotting Suspicious Behaviors in Multimodal Data: A General Metric and Algorithms", TKDE 2016.

Suspiciousness in Multi-dimensional Data

Q: Which is more suspicious? We need a metric to evaluate the suspiciousness.

Jiang, et al. (TKDE 2016)

Criteria for Suspiciousness Metric

What properties are required of a good metric?

Axioms: 1 to 4

 $c_1 > c_2 \iff f(\mathbf{n}, c_1, \mathbf{N}, C) > f(\mathbf{n}, c_2, \mathbf{N}, C)$

 $p_1 < p_2 \iff \hat{f}(\mathbf{n}, \rho, \mathbf{N}, p_1) > \hat{f}(\mathbf{n}, \rho, \mathbf{N}, p_2)$

Jiang, et al. (TKDE 2016)

Axiom 5: Cross Dimensions

Not including a mode is the same as including all values for that mode.

New information (more modes) can only make our blocks more suspicious

Q: Which is more suspicious?

Jiang, et al. (TKDE 2016)

A General Suspiciousness Metric

 Negative log likelihood of block's probability

$$f(n, c, N, C) = -\log\left[Pr(Y_n = c)\right]$$

Lemma Given an $n_1 \times \cdots \times n_K$ block of mass c in $N_1 \times \cdots \times N_K$ data of total mass C, the suspiciousness function is

$$f(\mathbf{n}, c, \mathbf{N}, C) = c(\log \frac{c}{C} - 1) + C \prod_{i=1}^{K} \frac{n_i}{N_i} - c \sum_{i=1}^{K} \log \frac{n_i}{N_i}$$

Using ρ as the block's density and p is the data's density, we have the simpler formulation

$$\hat{f}(\mathbf{n}, \rho, \mathbf{N}, p) = \left(\prod_{i=1}^{K} n_i\right) D_{KL}(\rho||p)$$

Advantages

CrossSpot Algorithm

- Greedy algorithm by maximizing the metric
 - Start with seed blocks
 - Parameter-free: iteratively update the blocks
 - Scalable: parallelize to multiple machines

Hijacked Hashtags

User × hashtag × IP × minute	Mass c	Suspiciousness
582×3×294× 56,940	5,941,821	111,799,948
188×1×313× 56,943	2,344,614	47,013,868
75×1×2×2,061	689,179	19,378,403

User ID	Time	IP address (city, province)	Tweet text with hashtag
USER-D	11-18 12:12:51	IP-1 (Deyang, Shandong)	#Snow# the Samsung GALAXY SII QQ Service customized version
USER-E	11-18 12:12:53	IP-1 (Deyang, Shandong)	#Snow# the Samsung GALAXY SII QQ Service customized version
USER-F	11-18 12:12:54	IP-2 (Zaozhuang, Shandong)	#Snow# the Samsung GALAXY SII QQ Service customized version
USER-E	11-18 12:17:55	IP-1 (Deyang, Shandong)	#Li Ning - a weapon with a hero# good support activities!
USER-F	11-18 12:17:56	IP-2 (Zaozhuang, Shandong)	#Li Ning - a weapon with a hero# good support activities!
USER-D	11-18 12:18:40	IP-1 (Deyang, Shandong)	#Toshiba Bright Daren# color personality test to find out your sense
USER-E	11-18 17:00:31	IP-2 (Zaozhuang, Shandong)	#Snow# the Samsung GALAXY SII QQ Service customized version
USER-D	11-18 17:00:49	IP-2 (Zaozhuang, Shandong)	#Toshiba Bright Daren# color personality test to find out your sense
USER-F	11-18 17:00:56	IP-2 (Zaozhuang, Shandong)	#Li Ning - a weapon with a hero# good support activities!

Network Attacks (LBNL)

	#	Src-IP×dst-IP×port×second	Mass c	Suspiciousness
	1	411×9×6× 3,610	47,449	552,465
CROSSSPOT	2	533×6×1× 3,610	30,476	400,391
	3	5×5×2× 3,610	18,881	317,529
	4	11×7×7× 3,610	20,382	295,869
	1	15×1×1×1,336	4,579	80,585
HOSVD	2	$1 \times 2 \times 2 \times 1,035$	1,035	18,308
	3	$1 \times 1 \times 1 \times 1,825$	1,825	34,812
	4	$1 \times 13 \times 6 \times 181$	1,722	29,224

4. Events or Advertising Campaigns

 Density in multi-contextual behavioral data 20:03:09 @ebekahwsm

this better be the best halftime show ever in the history of halftimes shows. ever. **#SuperBowl**

Emptyleat

38

Contextual factors: Ono-avarantood Empty(cot

	value	of) val	lue Set value	of)	value	
Jynamic						
Time slice	User	Location	Phrase	Hashtag	URL	
20:00- 20:30	@ebekahwsm	Ø	{best halftime show, in the history,	{#SuperBowl}	Ø	

halftimes shows}

Given tweets in Super Bowl 2013, can we find events (score prediction, halftime show, advertising campaigns, etc.)?

16:30 17:00	16:30:31 My prediction Ravens 34 Niners 31 "my prediction" 16:30:57 Ready for the big game :D, my prediction 24-20 SF #SuperBowl "my prediction" 16:31:14 My prediction for superbowl 48 Jets over Bears 17-13 Mark Sanchez MVP 16:32:24 I predict Baltimore Ravens will win 27 to 24 or 25 or 26. Basically it will be a close game.	user (3,325)	phrase 226	hashtag (0)	URL (0)	3,397 tweets	Tartan #1: (1 dim) 16:30-17:30
17:30	17:30:51 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:01 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:16 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:19 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist	user (196)	phrase 4	RT @user 1	URL 1	196 tweets	Tartan #2: (3 dims) 17:00-18:00
18:00 18:30	18:55:03 <u>RT @49ers</u> : <u>Kaepernick is sacked</u> on 3rd and goal. #49ers <u>K David Akers</u> <u>makes 36-yard FG</u> . <u>Baltimore leads 7-3 with 3:58 left in 1st Qtr</u> . #SB47 18:55:04 <u>RT @49ers</u> : <u>Kaepernick is sacked</u> on 3rd and goal. #49ers <u>K David Akers</u> <u>makes 36-yard FG</u> . <u>Baltimore leads 7-3 with 3:58 left in 1st Qtr</u> . #SB47 18:55:44 <u>RT @Ravens</u> : <u>David Akers</u> is good from 36 yards to make the score 7-3 Ravens. <u>Nice job</u> by the defense to tighten up in the red zone.	user (213)	phrase 21	RT @user 3	URL 6 (0)	215 tweets	Tartan #3: (2 dims) 18:30-19:30
19:00 19:30	20:20:01 RT @ExtraGrumpyCat: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:02 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0BlloPXs 20:20:04 RT @ExtraGrumpyCat: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:05 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:05 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:05 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0BlloPXs	user (617)	phrase	RT @user	URL 4 4	617 tweets	Tartan #4: (3 dims) 20:00-21:00
20:00 20:30	20:20:47 (Manhattan, NY)and every one of those girls took #ballet #Beyonce #superbowl 20:22:01 (New York, NY) I have the biggest lady boner for Beyonce	location 2	phrase 55	hashtag 17	URL 7 (0)	166 tweets	Tartan #5: (3 dims) 20:00-21:00
21:00 21:30	21:44:42 Ahora si pff #49ers 23-28 #Ravens "28-23", 21:44:44 Baltimore #Ravens 28-23 San Francisco #49ers "49ers, #Ravens 21:44:50 FG Akers #49ers 23-28 #Ravens 3Q 3:10 #SuperBolwXLVII #SuperBowl #NFL #49ers, #Ravens	user (650)	phrase 69	hashtag 11	URL (0)	653 tweets	Tartan #6: (2 dims) 21:00-22:00
22:00	22:42:27 Congratulations Ravens!!!! "congratulations", "game over" 22:42:43 Congratulations Ray Lewis and the Ravens. "congratulations", "game over" 22:42:43 Game over.! Ravens won ray got his retirement ring now all y'all boys and girls go to sleep .! 2:42:52 "@LetThatBoyTweet: Game over. Ravens win the Super Bowl."	user (1942)	phrase 248	hashtag (0)	URL (0)	1,950 tweets	Tartan #7: (1 dim) 22:00-23:30

Meng Jiang, Christos Faloutsos, Jiawei Han. "CATCHTARTAN: Representing and Summarizing Dynamic Multicontextual Behaviors", KDD 2016.

Tensor Fails: Representation

"Two-Level Matrix" and Tartans

Behavior representation

Behavior summaries

Jiang, et al. (KDD 2016)

What is Tartan?

Objective Function to Maximize (cont.)

$$f(\mathcal{A}, \mathcal{X}) = L(\mathcal{X}^{\mathcal{A}}) - L(\mathcal{A}) - L(\mathcal{X}^{\mathcal{A}} \setminus \mathcal{A}).$$

$$V = \left(\sum_{d\in\mathcal{D}} N_d\right) \left(\sum_{t\in\mathcal{T}} E^{(t)}\right).$$

$$C = \sum_{d\in\mathcal{D}, t\in\mathcal{T}} \sum_{b\in\{1,\dots,E^{(t)}\}, i\in\{1,\dots,N_d\}} \mathcal{X}_d^{(t)}(b,i).$$

$$L(\mathcal{X}^{\mathcal{A}}) = g(V+C,C) + L_{\mathcal{D}}(\mathcal{A}) + L_{\mathcal{T}}(\mathcal{A}) + \sum_{d \in \mathcal{D}} \log^* N_d + \sum_{t \in \mathcal{T}} \log^* E^{(t)}.$$

$$L(\mathcal{A}) = L_{\mathcal{D}}(\mathcal{A}) + L_{\mathcal{V}}(\mathcal{A}) + L_{\mathcal{T}}(\mathcal{A}) + L_{\mathcal{B}}(\mathcal{A}) + L_{\mathcal{A}}(\mathcal{A}).$$

$$L(\mathcal{X}^{\mathcal{A}} \setminus \mathcal{A}) = g(V + C - v - c, C - c);$$

Encoding the Tartan: Dimensions

$$H_{\mathcal{D}}(X) = -\sum_{x \in \{0,1\}} P(X = x) \log P(X = x)$$

$$= -\left(\frac{D^{\mathcal{A}}}{D} \log \frac{D^{\mathcal{A}}}{D} + \frac{D - D^{\mathcal{A}}}{D} \log \frac{D - D^{\mathcal{A}}}{D}\right).$$

$$L_{\mathcal{D}}(\mathcal{A}) = \log^* D + \log^* D^{\mathcal{A}} + D \cdot H_D(X)$$

$$= \log^* D + \log^* D^{\mathcal{A}} + g(D, D^{\mathcal{A}}),$$

45

Encoding the Tartan: Dimensional Values

$$H_{\mathcal{V}_d}(X) = -\left(\frac{n_d}{N_d}\log\frac{n_d}{N_d} + \frac{N_d - n_d}{N_d}\log\frac{N_d - n_d}{N_d}\right).$$
$$L_{\mathcal{V}}(\mathcal{A}) = \sum_{d \in \mathcal{D}} \left(\log^* N_d + \log^* n_d + g(N_d, n_d)\right).$$

Encoding the Tartan: Time Slices

 $L_{\mathcal{T}}(\mathcal{A}) = \log^* T + \log^* T^{\mathcal{A}} + \log^* t_{start}$

Encoding the Tartan: Behaviors

$$H_{\mathcal{B}^{(t)}}(X) = -\left(\frac{e^{(t)}}{E^{(t)}}\log\frac{e^{(t)}}{E^{(t)}} + \frac{E^{(t)} - e^{(t)}}{E^{(t)}}\log\frac{E^{(t)} - e^{(t)}}{E^{(t)}}\right).$$
$$L_{\mathcal{B}}(\mathcal{A}) = \sum_{t \in \mathcal{T}} \left(\log^* E^{(t)} + \log^* e^{(t)} + g(E^{(t)}, e^{(t)})\right).$$

Encoding the Tartan: Entries

$$v = \left(\sum_{d\in\mathcal{D}} n_d\right) \left(\sum_{t\in\mathcal{T}} e^{(t)}\right).$$

$$c = \sum_{d\in\mathcal{D}, t\in\mathcal{T}} \sum_{b\in\mathcal{B}^{(t)}, i\in\mathcal{V}_d} \mathcal{X}_d^{(t)}(b, i).$$

$$H_{\mathcal{A}}(X) = -\left(\frac{c}{v+c}\log\frac{c}{v+c} + \frac{v}{v+c}\log\frac{v}{v+c}\right).$$

$$L_{\mathcal{A}}(\mathcal{A}) = (v+c)H_{\mathcal{A}}(X) = g(v+c,c).$$

Jiang, et al. (KDD 2016)

Greedy Search for the Local Optimum

(a) Update the set of behaviors.

(b) Update the set of values.

Time complexity:

 $\mathcal{O}(\sum_{d} N_d \log N_d + \sum_{t} E^{(t)} \log E^{(t)})$

(c) Update the consecutive time slices. (d) Update the set of dimensions.

Experiments: Events in Tweets

16:30 17:00	16:30:31 My prediction Ravens 34 Niners 31 "my prediction Ravens 34 Niners 31 16:30:57 Ready for the big game :D, my prediction 24-20 SF #SuperBowl "my prediction" 16:31:14 My prediction for superbowl 48 Jets over Bears 17-13 Mark Sanchez MVP "my prediction" 16:32:24 I predict Baltimore Ravens will win 27 to 24 or 25 or 26. Basically it will be a close game.	user (3,325)	phrase 226	hashtag (0)	URL (0)	3,397 tweets	Tartan #1: (1 dim) 16:30-17:30
17:30	17:30:51 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:01 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:16 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:19 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist 17:31:19 RT @LMAOTWITPICS: Make Your Prediction. Retweet For 49ers http://t.co/KKksEist	user (196)	phrase 4	RT @user 1	URL 1	196 tweets	Tartan #2: (3 dims) 17:00-18:00
18:00 18:30 19:00	18:55:03 <u>RT @49ers: Kaepernick is sacked</u> on 3rd and goal. #49ers <u>K David Akers</u> <u>makes 36-yard FG. Baltimore leads 7-3 with 3:58 left in 1st Qtr.</u> #SB47 18:55:04 <u>RT @49ers: Kaepernick is sacked</u> on 3rd and goal. #49ers <u>K David Akers</u> <u>makes 36-yard FG. Baltimore leads 7-3 with 3:58 left in 1st Qtr.</u> #SB47 18:55:44 <u>RT @Ravens: David Akers</u> is good from 36 yards to make the score 7-3 Ravens. <u>Nice job by the defense</u> to tighten up in the red zone.	user (213)	phrase 21	RT @user	URL 3 (0)	215 tweets	Tartan #3: (2 dims) 18:30-19:30
19:30	20:20:01 RT @ExtraGrumpyCat: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:02 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0KSy7Cv6 20:20:04 RT @ExtraGrumpyCat: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:05 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0VSy7Cv6 20:20:05 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0KSy7Cv6 20:20:05 RT @WolfpackAlan: No Superbowl halftime show will ever surpass this. http://t.co/0KSy7Cv6 Surpass this. http://t.co/6BlloPXs	user (617)	phrase 11	RT @user	URL 4 4	617 tweets	Tartan #4: (3 dims) 20:00-21:00
20:00 20:30	 20:20:47 (Manhattan, NY)and every one of those girls took #ballet #Beyonce #superbowl 20:22:01 (New York, NY) I have the biggest lady boner for Beyonce <u>#BeyonceBowl #DestinyBowl #DestinysChild #SuperBowl</u> 20:24:32 (Manhattan, NY) No one can ever top that performance by Beyonce. <u>#Beyonce #superbowl #halftimeshow</u> "beyonce", #beyonce, 	location 2	phrase 55	hashtag 1'	URL 7 (0)	166 tweets	Tartan #5: (3 dims) 20:00-21:00
21:00 21:30	21:44:42 Ahora si pff #49ers 23-28 #Ravens "28-23", 21:44:44 Baltimore #Ravens 28-23 San Francisco #49ers "49ers, #Ravens 21:44:50 FG Akers #49ers 23-28 #Ravens 3Q 3:10 #SuperBolwXLVII #SuperBowl #NFL #49ers, #Ravens	user (650)	phrase 69	hashtag 1	URL (0)	653 tweets	Tartan #6: (2 dims) 21:00-22:00
22:00	22:42:27 Congratulations Ravens!!!! "congratulations", "game over" 22:42:43 Congratulations Ray Lewis and the Ravens. "congratulations", "game over" 22:42:43 Game over.! Ravens won ray got his retirement ring now all y'all boys and girls go to sleep .! 22:42:52 "@LetThatBoyTweet: Game over. Ravens win the Super Bowl."	user (1942)	phrase 248	hashtag (0)	URL (0)	1,950 tweets	Tartan #7: (1 dim) 22:00-23:30

Experiments: Research Trends in DBLP Data

199	Author	Venue	Keyword		Cited	#Paper	Venue	Keyword		#Paper
07 2000	76 Cheng-xiang Zhai Hui Fang S. Kambhampati	7 SIGIR VLDB TKDE	7 "information ret "data integration "text classificati	trieval" n" on"	68 p56743 ¹ p62995 p76869	32 2003- 2007	5 ICML NIPS 	6 "reinforcement" "machine lear	40 1997- 2002	
2(Author Ve	nue Cited	#Paper	Venue	Keyword	#Paper	Author	Venue	Keyword	#Paper
03 2006	61Jiawei HanSIXifeng YanMe2 "Free	G- DD equent subgr	95 ² 22 2004- 2010 aph discovery"	3 ICDM AAAI TKDE	1 "anomaly detection"	25 2005- 2013	27 C. Faloutsos J. Pei P. S. Yu X. Lin	6 KDD ICDM ICDE TKDE	12 "large graphs" "data streams" "evolving data" "evolving graphs"	70 2006- 2013
、	Author	Venue	Keyword		Cited	#Paper	C. Aggarwal			
009 2012	12 Ryen White Hang Li Tie-Yan Liu Zhaohui Zheng	5 SIGIR WWW WSDM CIKM	3 "web search" "click-through c "sponsored sear	lata" ch"	12 p82630 ³ p116290 p103899 p106191	32 2006- 2013	Author 8 Qiang Yang Dou Shen Sinno Pan	Venue 3 KDD PAKDD AAAI	Keyword 6 "transfer learning" "data mining" "localization models"	#Paper 17 2007- 2010

Summary

- Density-based methods and applications
 - Density in temporal bipartite graphs
 - CopyCatch (WWW'13): Facebook, ill-gotten likes
 - Density (synchronicity) in large directed graphs
 - CatchSync (KDD'14): Twitter/Weibo, zombie followers
 - Density (suspiciousness) in multidimensional data
 - CrossSpot (TKDE'16): Twitter/Weigo, social spam
 - Density (MDL principle) in multicontextual data
 - CatchTartan (KDD'16): Twitter, events/campaigns

References

- Meng Jiang, Peng Cui, and Christos Faloutsos. "Suspicious behavior detection: current trends and future directions." IEEE Intelligent Systems, 2016. (Survey paper)
- Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos. "Copycatch: stopping group attacks by spotting lockstep behavior in social networks", WWW 2013.
- Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. "CatchSync: Catching Synchronized Behavior in Large Directed Graphs", KDD 2014 Best Paper Finalist.
- Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, Christos Faloutsos.
 "Spotting Suspicious Behaviors in Multimodal Data: A General Metric and Algorithms", TKDE 2016.
- Meng Jiang, Christos Faloutsos, Jiawei Han. "CATCHTARTAN: Representing and Summarizing Dynamic Multicontextual Behaviors", KDD 2016.
- M. Faloutsos, P. Faloutsos, and C. Faloutsos. "On power-law relationships of the internet topology." SIGCOMM, 1999.
- A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Weiner. "Graph structure in the web." Computer Networks, 2000.
- F. Chung and L. Lu. "The average distances in random graphs with given expected degrees." PNAS, 2002.
- J. Kleinberg. "Authoritative sources in a hyperlinked environment." JACM, 1999.
- H. Kwak, C. Lee, H. Park, and S. Moon. "What is Twitter, a social network or a news media?" WWW, 2010.

Tutorial: Data-Driven Approaches towards Malicious Behavior Modeling

Meng Jiang University of Notre Dame

Srijan Kumar Stanford University

Christos Faloutsos Carnegie Mellon University

V.S. Subrahmanian University of Maryland, College Park

Tutorial link: http://bit.ly/kdd2017