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How to get spectral subspaces?
• Frequency components à Principal Component

Analysis (PCA): Eigenvectors

• Other spectral decomposition methods. Singular Value
Decomposition (SVD): Singular vectors
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Spectral methods: Community Identification

Scott White and Padhraic Smyth. “A spectral clustering approach to finding communities in graphs”,SDM 2005.

Nodes are USA 
college football 
teams and edges 
represent which 
team played with 
which other 
team. 

Communities 
represent groups 
of frequently co-
playing teams.



Spectral methods: Anomaly detection
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Leading eigenvector
(blue for one, red for other)

M. E. J. Newman. “Finding community structure in networks using the eigenvectors of matrices”, Physical Review E 2006.

Normal data points
Malicious data
points (users,
behaviors,
communities, etc.) Potential application:

anomaly detection



Spectral-based methods

• Advantages
– Visualization: tunable value of k = number of

subspaces
– Feature extraction by data distribution rather than 

manual or automatic selection
– “Principal” components represent “leading” vectors
– Data: Can easily work with N-by-N graphs, N-by-N-

by-N tensors
– Applications: Finding communities and anomalies

• Disadvantages
– Lack of interpretability of the subspaces/features
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Finding Surprising Spectral Patterns in Large Graphs

• Problem definition: Given a social graph based on
mobile calls made from/to callers, find caller
communities.

• Dataset: Activity over the duration of a month, 186,000
nodes and 464,000 edges.

• Key contribution: Discovery of the “spokes”
phenomenon
– The singular vectors of the graph, when plotted

against each other, often have clear separate lines,
typically aligned with axes.

– Use EigenEigen (EE) plots to identify communities in
the form of cliques or near-cliques, perfect or
near-perfect bipartite-cores.
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B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, Christos Faloutsos.
“EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs”, PAKDD 2010.



Spokes and Dense Cliques
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Subgraphs of nodes identified as 
important by different V vectors: all 
are tightly knitSpokes

Long vs. Short? Tilted?

V-V plots: Right spectral subspaces

Prakash, et al. (PAKDD 2010)



Spectral subspace

• What is the meaning of spokes, elongated 
spokes, tilted spokes?

• Are there other patterns? 
• Can these patterns be used to identify 

malicious behavior?
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Inferring Lockstep Behavior from Connectivity Patterns  

• Problem definition: Given a large graph, from spectral 
subspace plots, can we infer lockstep behavior 
patterns?

10Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. “Inferring 
lockstep behavior from connectivity pattern in large graphs”, KAIS 2016.



• Problem definition: Given a large graph, from spectral 
subspace plots, can we infer lockstep behavior 
patterns?
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“Fame”: popular users 
are followed by several 
users 

“Camouflage”: 
fraudsters follow 
other users to 
hide their 
behavior

× 100

× ….× ….

follow × 100

× 10,000

× 1,000

Jiang, et al. (KAIS 2016)

Inferring Lockstep Behavior from Connectivity Patterns  



• Problem definition: Given a large graph, from spectral 
subspace plots, can we infer lockstep behavior 
patterns?
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“Fame”

“Camouflage”

Jiang, et al. (KAIS 2016)

Inferring Lockstep Behavior from Connectivity Patterns  



Case 0: No lockstep behavior
• No blocks in adjacency matrix lead to 

scattering and no patterns in spectral 
subspace 
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Adjacency Matrix Spectral Subspace Plot

Jiang, et al. (KAIS 2016)



Case 1: Non-overlapping dense lockstep

• Dense blocks in adjacency matrix 
generates “rays” in spectral subspace

14
Jiang, et al. (KAIS 2016)

Adjacency Matrix Spectral Subspace Plot



Case 2: Non-overlapping sparse lockstep

• Low density blocks in adjacency matrix 
leads to elongation of rays, indicating 
more varied behavior
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Jiang, et al. (KAIS 2016)

Adjacency Matrix Spectral Subspace Plot



Case 3: Non-overlapping lockstep with outside edges 
• Edges to or from blocks in adjacency matrix leads to 

tilting of rays in spectral subspace
• Edges going out of block: “camouflage” by fraudsters
• Edges into the block: “fame” edges to popular users

16
Jiang, et al. (KAIS 2016)

Adjacency Matrix Spectral Subspace Plot



Case 4: Overlapping lockstep
• “Staircase”, i.e. sequentially overlapping blocks, in 

adjacency matrix generates “Pearls” in spectral 
subspace
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Adjacency Matrix 
with staircase

Spectral subspace plot 
showing pearls

Jiang, et al. (KAIS 2016)



LockInfer Algorithm:
Reading Spectral Subspace Plots

18

Spectral
Subspace Plot

Polar Coordinate
Transform Histograms



Spotting Small-Scale, Stealthy Attacks

• Problem definition: Can we catch stealthy attacks that 
are missed by traditional spectral methods?

• Dataset: Twitter “who-follows-whom” social graph, 41.7 
million nodes, 1.5 billion edges

19
Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos. “Spotting suspicious link behavior 
with fBox: An adversarial perspective”, ICDM 2014.

Stealthy attackers here?



fBox: Reconstructed Degrees
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Norm-Preserving Property of SVD

• The row vectors of a full rank decomposition
and associated projection will retain the same
L2 norm or vector length as in the original space:
– For k = rank(A), ||Ai||2 = ||(U∑)i||2 and ||AT

j||2 = ||(V∑)j||2

• So, compare:
– Reconstructed out-degree vs. real out-degree
– Reconstructed in-degree vs. real in-degree

21Shah, et al. (ICDM 2014)



Why does fBox work?

For k < rank(A), dishonest users’ 
reconstruction is poor compared to that of 
honest users. 
• Dishonest users who either form isolated 

components or link to dishonest objects will 
project poorly and have characteristically low 
reconstruction degrees

• Honest users who are well-connected to real 
products and brands should project more 
strongly and have characteristically higher 
reconstruction degrees 
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Reconstructed out-degree vs. Real out-degree

23Shah, et al. (ICDM 2014)



Reconstructed in-degree vs. Real in-degree

24Shah, et al. (ICDM 2014)



Reconstructed in-degree
vs. Real in-degree (cont.)

25Shah, et al. (ICDM 2014)



Bounding Graph Fraud in Camouflage

• An application: Fake reviews

26Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, Christos Faloutsos. “FRAUDAR: Bounding 
Graph Fraud in the Face of Camouflage”, KDD 2016 Best Research Paper Award.



“User-Product” Review Graph

• Problem definition: Given a “user-product” 
review graph, can we spot fraudsters and 
customers?
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Users

Products
(products whose 
owners buy fake 
reviews)

Hooi, et al. (KDD 2016)



Camouflage: Evading Detection
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Random camouflage Hijacked user accounts

Hooi, et al. (KDD 2016)

“camouflage” in LockInfer “Fame” in LockInfer



Formal Problem Definition

• Given:
– Bipartite graph between users and products
– May have prior node suspiciousness scores

• Develop detection metric that is:
– Camouflage-resistant
– Near-linear time
– Offers provable bounds
– Works well in practice

29

0

2

2

0 1 1 1

Node scores ai

Products

Users

Hooi, et al. (KDD 2016)

Fraud 
ratings



Suspiciousness Metric
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Users

Products

A

B

g(A, B) = 5

Users

Products

A

B

g(A, B) = 20

Hooi, et al. (KDD 2016)

g(A,B) is a density metric for edges from set of users A to 
set of products B.

Fraud 
ratings

Fraud 
ratings



Camouflage-Resistance

Metric g is camouflage-resistant if g(A,B) does not
decrease when camouflage is added to A.
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g(A,B)=50

ACamouflage 
is added

Hooi, et al. (KDD 2016)



Proposed Suspiciousness Metric
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Edge Scores cij
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Proposed weighting scheme: 
cij = 1 / log(unweighted sum of j-th column)

Why?
• Popular products are 

not necessarily 
suspicious

• Fraudulent products 
have a high fraction of 
edges from fraudsters

tf-idf

Honest
users

(1M 
reviews)

(1000 
reviews)



Metric Properties
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Average suspiciousness g(A,B):
Can be optimized in near-linear time
Provable bounds
Camouflage-resistant
Works in practice

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm

• Start with sets A, B as all users / products
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FRAUDAR: Greedy Algorithm (cont.)

• Delete rows / columns greedily to 
maximize g (average suspiciousness)
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FRAUDAR: Greedy Algorithm (cont.)

• Delete rows / columns greedily to 
maximize g (average suspiciousness)
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FRAUDAR: Greedy Algorithm (cont.)

• Delete rows / columns greedily to 
maximize g (average suspiciousness)
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FRAUDAR: Greedy Algorithm (cont.)

• Delete rows / columns greedily to 
maximize g (average suspiciousness)
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FRAUDAR: Greedy Algorithm (cont.)

• Continue until A and B are empty

40

0
0
1

2
2
2

0 1 1 1 1 1 1 1

2
2

22
2
23

3
23

2

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm (cont.)

• Return the best subsets A and B seen so 
far (based on g)
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Computation Time

• O(|E| log(|V|): using appropriate data structures

42
Hooi, et al. (KDD 2016)



Metric Properties
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Average suspiciousness g(A,B):
Can be optimized in near-linear time
Provable bounds
Camouflage-resistant
Works in practice

Hooi, et al. (KDD 2016)



Theoretical Guarantee

• Theorem 1: The subgraph (A,B) returned by 
FRAUDAR satisfies
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FRAUDAR subgraph Optimum value of g

Hooi, et al. (KDD 2016)



Metric Properties
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Average suspiciousness g(A,B):
Can be optimized in near-linear time
Provable bounds
Camouflage-resistant
Works in practice

Hooi, et al. (KDD 2016)



Camouflage Resistance

• Theorem 2: If cij is a column weighting (i.e. 
cij is any function of the j-th column), then 
g is camouflage-resistant.
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BUsers

Products

ACamouflage

(cij = 1 / log(sum of j-th column) satisfies this)

Hooi, et al. (KDD 2016)



Metric Properties
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Average suspiciousness g(A,B):
Can be optimized in near-linear time
Provable bounds
Camouflage-resistant
Works in practice

Hooi, et al. (KDD 2016)



Experiments: Detecting Injection of Various 
Types of “Camouflage”

• Amazon Review Graph: 
24K users, 4K products

• Injected 200 x 200 
blocks with various 
types of camouflage
– None
– Random camouflage
– Biased camouflage
– Hijacked accounts

48
Hooi, et al. (KDD 2016)



Experiments: Detecting Injection of Various 
Types of “Camouflage”

• Amazon Review Graph: 
24K users, 4K products

• Injected 200 x 200 
blocks with various 
types of camouflage
– None
– Random camouflage
– Biased camouflage
– Hijacked accounts
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Experiments: Detecting Injection of Various 
Types of “Camouflage”

• Amazon Review Graph: 
24K users, 4K products

• Injected 200 x 200 
blocks with various 
types of camouflage
– None
– Random camouflage
– Biased camouflage
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Experiments: Detecting Injection of Various 
Types of “Camouflage”

• Amazon Review Graph: 
24K users, 4K products

• Injected 200 x 200 
blocks with various 
types of camouflage
– None
– Random camouflage
– Biased camouflage
– Hijacked accounts
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Hooi, et al. (KDD 2016)



Accuracy on Detecting Injected Fraud
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Accuracy on Detecting Fraud in Real Twitter Data

• Found 4031x4313 
size block of 
followers-followees
with 68% density

• Users detected as 
fraudulent by 
Fraudar are more 
likely to be deleted, 
suspended, use 
Twitter user buying 
services.

53



Summary

• Spectral methods
– Spectral clustering and community detection

• Spectral subspaces and spectral subspace plots
• EigenSpokes (singular vectors and “spokes”)
• LockInfer (“camouflage”, “fame”, “pearls”, “staircase”, 

etc.)
• fBox (small-scale, stealthy attacks; reconstructed 

degrees)
• FRAUDAR (theoretical guarantees for bounding graph 

fraud in the face of camouflage)
• Applications: Mobile calls, Twitter social network, “user-

product” reviews
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