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How to get spectral subspaces?

* Frequency components - Principal Component
Analysis (PCA): Eigenvectors

n

n features k subspaces
Squared Cv =Av
n covariance "
N data| Data matrix: A matrix or affinity v
points matrix: C

» Other spectral decomposition methods. Singular Value
Decomposition (SVD): Singular vectors
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Spectral methods: Community Identification
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Scott White and Padhraic Smyth. “A spectral clustering approach to finding communitiesin graphs”, SDM 2005.



Spectral methods: Anomaly detection

Leading eigenvector
(blue for one, red for other)

Malicious data
points (users,
behaviors,
communities, etc.)

Normal data points

Potential application:
anomaly detection

M. E. J. Newman. “Finding community structurein networks using the eigenvectors of matrices”, Physical Review E 2006. 5



Spectral-based methods

« Advantages

— Visualization: tunable value of k = number of
subspaces

— Feature extraction by data distribution rather than
manual or automatic selection

— “Principal” components represent “leading” vectors
— Data: Can easily work with N-by-N graphs, N-by-N-
by-N tensors

— Applications: Finding communities and anomalies

« Disadvantages
— Lack of interpretability of the subspaces/features



Finding Surprising Spectral Patterns in Large Graphs

* Problem definition: Given a social graph based on
mobile calls made from/to callers, find caller
communities.

« Dataset: Activity over the duration of a month, 186,000
nodes and 464,000 edges.

« Key contribution: Discovery of the “spokes”
phenomenon

— The singular vectors of the graph, when plotted
against each other, often have clear separate lines,
typically aligned with axes.

— Use EigenEigen (EE) plots to identify communities in
the form of cliques or near-cliques, perfect or
near-perfect bipartite-cores.

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, Christos Faloutsos.
“EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs”, PAKDD 2010.



Spokes and Dense Cliques

V-V plots: Right spectral subspaces Subgraphs of nodes identified as
important by different V vectors: all

Spokes are tightly knit

~|l s i $

0.4 0.4 0.4

°33 3 sass.eree

-0.4 -0.4 -0.4

o3e3s"3Re8888882200

[
H
3
H
e I M

v, Sgog o

-0.4 -04

B

od ") S b

(a) EE-plot (b) Spy Plots of Sub-graph of Top 20 Nodes

Long vs. Short? Tilted?

Prakash, et al. (PAKDD 2010)



Spectral subspace

* What is the meaning of spokes, elongated
spokes, tilted spokes?

* Are there other patterns?

» Can these patterns be used to identify
malicious behavior?



Inferring Lockstep Behavior from Connectivity Patterns

* Problem definition: Given a large graph, from spectral
subspace plots, can we infer lockstep behavior
patterns?

5,000 2,000® 1,000 10,000 20,000

FOLLOWERS FOLLOWERS FOLLOWERS % FOLLOWERS FOLLOWERS

$69.99 $29.99 $15.99 $119.99 $229.99

Delivery within 3-4 days Delivery within 2-3 days Delivery within 1-2 days Delivery within 4-5 days Delivery within 5-8 days
Buy Now Buy Now Buy Now Buy Now Buy Now
) visa ] visa ) visa ] visa e visa

Save + 3% i . i ) Save + 34%
Save + 2% Save + 14%

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shigiang Yang. “Inferring

lockstep behavior from connectivity pattern in large graphs”, KAIS 2016. *



Inferring Lockstep Behavior from Connectivity Patterns

* Problem definition: Given a large graph, from spectral
subspace plots, can we infer lockstep behavior

patterns?

“Camouflage”: i X100 “Fame”: popular users
fraudsters follow / are followed by several
11

~
H
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behavior
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Jiang, et al. (KAIS 2016)



Inferring Lockstep Behavior from Connectivity Patterns

* Problem definition: Given a large graph, from spectral
subspace plots, can we infer lockstep behavior

patterns?

© o o
“Camouflage”

* 0

Q

e @)
E’ “Fame”
o © o o ©
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Jiang, et al. (KAIS 2016)



synthetic followee

Case 0: No lockstep behavior

No blocks in adjacency matrix lead to
scattering and no patternsin spectral
subspace

Adjacency Matrix Spectral Subspace Plot
e >
synthetic follower S u1

Jiang, et al. (KAIS 2016)
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Case 1: Non-overlapping dense lockstep

Dense blocks in adjacency matrix
generates “rays” in spectral subspace

Adjacency Matrix Spectral Subspace Plot
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Case 2: Non-overlapping sparse lockstep

Low density blocks in adjacency matrix
leads to elongation of rays, indicating
more varied behavior

Adjacency Matrix Spectral Subspace Plot
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Rule 2 (long “rays”): two blocks, low density|(50%)}, no “camouflage”, no “fame”
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Case 3: Non-overlapping lockstep with outside edges

« Edges to or from blocks in adjacency matrix leads to
tilting of rays in spectral subspace

« Edges going out of block: “camouflage” by fraudsters
« Edges into the block: “fame” edges to popular users

Adjacency Matrix Spectral Subspace Plot
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Rule 3 (tilting “rays”): two blocks, with “camouflage”, no “fame”

16
Jiang, et al. (KAIS 2016)



Case 4: Overlapping lockstep

« “Staircase”, i.e. sequentially overlapping blocks, in
adjacency matrix generates “Pearls” in spectral

subspace
Adjacency Matrix Spectral subspace plot
with staircase showing pearls
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Rule 4 (“pearls”): a “staircase” of three partially overlapping blocks.
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Locklnfer Algorithm:
Reading Spectral Subspace Plots

Spectral Polar Coordinate
Subspace Plot  Transform Histograms
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Spotting Small-Scale, Stealthy Attacks

* Problem definition: Can we catch stealthy attacks that
are missed by traditional spectral methods?

« Dataset: Twitter “who-follows-whom” social graph, 41.7
million nodes, 1.5 billion edges

= B Stealthy attackers here?

-0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025
U4

Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos. “Spotting suspicious link behavior
with fBox: An adversarial perspective”, ICDM 2014.
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fBox: Reconstructed Degrees

SVD
N k subspaces k k subspaces
N | Data matrix: A ‘ N x X
2
U Vv

Reconstructed out-degree(i) = ||(UY)ill Reconstructed in-degree(j) = ||(V2);l]2

k subspaces g Kk k subspaces g K
N x » N N X N
2 2
U 1)Y Vv "))

Shah, et al. ICDM 2014)
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Norm-Preserving Property of SVD

* The row vectors of a full rank decomposition
and associated projection will retain the same
L2 norm or vector length as in the original space:
— For k = rank(A), ||All. = [|[(U2)ll. and ||ATj||2 = ”(VZ)jHQ

* S0, compare:
— Reconstructed out-degree vs. real out-degree
— Reconstructed in-degree vs. real in-degree

Shah, et al. (ICDM 2014)



Why does fBox work?

For k < rank(A), dishonest users’
reconstruction is poor compared to that of
honest users.

» Dishonest users who either form isolated
components or link to dishonest objects will
project poorly and have characteristically low
reconstruction degrees

 Honest users who are well-connected to real
products and brands should project more
strongly and have characteristically higher
reconstruction degrees



Reconstructed out-degree vs. Real out-degree

Reconstructed Out-degree
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Reconstructed in-degree vs. Real in-degree
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Bounding Graph Fraud in Camouflage

* An application: Fake reviews

I will do 5 five star reviews, all from real
profiles

Order Now ($5)

by appz_promote oy rockib28

V)@
N ER°Y

I will prowde 10 Five Star | will review and rate your iOS
ratings for your Android App app
STARTING AT $5 STARTING AT $5

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, Christos Faloutsos. “FRAUDAR: Bounding,
Graph Fraud in the Face of Camouflage”, KDD 2016 Best Research Paper Award.



“User-Product” Review Graph

* Problem definition: Given a “user-product”
review graph, can we spot fraudsters and
customers? Products

Users

Customers (products whose
‘_’ owners buy fake

H:onest object:s reviews)
Honest | fEisEs>
users
Fraudstersiii{-’é ﬁ
Fraudsters

Hooi, et al. (KDD 2016)
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Camouflage: Evading Detection

Random camouflage Hijacked user accounts

Customers Customers
G— >

Honest objects

Honest objects

Honest | pistsem st 'L
SIS Sl Honest
users ||/ e s S

S NPT A _
Fraudsters | Fomssgu==r sy

Hijacked

Camouflage frqydsters
(random)

“camouflage” in Locklnfer “Fame” in Locklnfer
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Formal Problem Definition

« Given:
— Bipartite graph between users and products
— May have prior node suspiciousness scores

* Develop detection metric that is:
— Camouflage-resistant
— Near-linear time Products
— Offers provable bounds
— Works well in practice Users -

ratings

2
0 1 1 1 f
X

Node scores a

29
Hooi, et al. (KDD 2016)



Suspiciousness Metric

g(A,B) is a density metric for edges from set of users A to
set of products B.

Products Products
B
Users - = Users ?
A4 Fraud A Fraud
Z ratings ratings
9(A, B)=5 g(A, B) =20

Hooi, et al. (KDD 2016)



Camouflage-Resistance

Metric g is camouflage-resistant if g(A,B) does not
decrease when camouflage is added to A.

Products

Users B B

A Camouflage A

9(A,B)=50 —_—  JAB)=50

31
Hooi, et al. (KDD 2016)



Proposed Suspiciousness Metric

“Average suspiciousness” g(A,B)

(sum of node susp.) + (sum of edge susp.)

Al + (B
Products
o A B
Missing edge g(= (1())+25)/7
Edge scores ¢; =35/7

Users

0
0
1
2
2
2

\

Node scores a
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Edge Scores c;

Proposed weighting scheme:

OO
c;= 1/ logunweighted sum of j-th column)

S5 5 Why?

"~ « Popular products are

_ B 2 not necessarily
LSRN I | suspicious

 Fraudulent products

SRS it | have a high fraction of

edges from fraudsters

(1000
reviews

33

Fraudsters



Metric Properties

Average suspiciousness g(A,B):

Can be optimized in near-linear time
Provable bounds
Camouflage-resistant

Works in practice

34
Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm

« Start with sets A, B as all users / products

B
A

35

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm (cont.)

» Delete rows / columns greedily to
maximize g (average suspiciousness)

B

Hooi, et al. (KDD 2016)
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FRAUDAR: Greedy Algorithm (cont.)

» Delete rows / columns greedily to
maximize g (average suspiciousness)

37

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm (cont.)

» Delete rows / columns greedily to
maximize g (average suspiciousness)

38

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm (cont.)

» Delete rows / columns greedily to
maximize g (average suspiciousness)

39

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm (cont.)

» Continue until A and B are empty

Hooi, et al. (KDD 2016)



FRAUDAR: Greedy Algorithm (cont.)

* Return the best subsets A and B seen so
far (based on g)

Hooi, et al. (KDD 2016)



Computation Time

« O(|E| log(|V]): using appropriate data structures

10*
[ ] [ ] .
— Linear Time .
L o
cC [ )
g o
8100 ¢ °
Q
£
- °
[ )
-1 .
10103 10

10
Number of edges
Hooi, et al. (KDD 2016)
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Metric Properties

Average suspiciousness g(A,B):

v) Can be optimized in near-linear time
Provable bounds
Camouflage-resistant

Works in practice

43
Hooi, et al. (KDD 2016)



Theoretical Guarantee

 Theorem 1: The subgraph (A,B) returned by
FRAUDAR satisfies

1
g(AUB) > 5 JOPT

/ XN

/
FRAUDAR subgraph Opt}num value of g

Hooi, et al. (KDD 2016)



Metric Properties

Average suspiciousness g(A,B):

v) Can be optimized in near-linear time
v) Provable bounds
Camouflage-resistant

Works in practice

45
Hooi, et al. (KDD 2016)



Camouflage Resistance

 Theorem 2: If ¢; is a column weighting (i.e.
c; is any function of the j-th column), then
g iIs camouflage-resistant.

Products

Users 2

Camouflage—> A -

(¢j=1/log(sum of j-th column)satisfies this)

Hooi, et al. (KDD 2016)



Metric Properties

Average suspiciousness g(A,B):

v) Can be optimized in near-linear time
v) Provable bounds

v} Camouflage-resistant

Works In practice

47
Hooi, et al. (KDD 2016)



Experiments: Detecting Injection of Various
Types of “Camouflage”

 Amazon Review Graph:
24K users, 4K products

* |njected 200 x 200
blocks with various

types of camouflage
— None

— Random camouflage
— Biased camouflage
— Hijacked accounts

Hooi, et al. (KDD 2016)
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Experiments: Detecting Injection of Various
Types of “Camouflage”

 Amazon Review Graph:

24K users, 4K products Customers

* Injected 200 x 200 Honest objects
blocks with various : :

types of camouflage Honest %}i S
— None users _._;_'{;:: ] P

— Random camouflage | fraudsters | ,f? L

— Biased camouflage Camouflage Froydsters
— Hijacked accounts (random)

49
Hooi, et al. (KDD 2016)



Experiments: Detecting Injection of Various
Types of “Camouflage”

 Amazon Review Graph:

24K users, 4K products

* |njected 200 x 200
blocks with various

types of camouflage Honest | £

— None users
— Random camouflage
— Biased camouflage
— Hijacked accounts

Fraudsters

Customers

)

Honest objects

- - . -t -

v .oz - L |

p '__'-.5-':_:. e .
ot s . T,

Camouflage Fraudsters

(biased)

Hooi, et al. (KDD 2016)
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Experiments: Detecting Injection of Various
Types of “Camouflage”

 Amazon Review Graph:

24K users, 4K products

* |njected 200 x 200
blocks with various

types of camouflage
— None

— Random camouflage
— Biased camouflage
— Hijacked accounts

Honest
users

Customers

—)

Honest objects

Hijacked

Hooi, et al. (KDD 2016)
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Accuracy on Detecting Injected Fraud

Accuracy on injected fraud — Amazon data
Detection Method

1.0 ' SA——
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Density of injected subgraph



Accuracy on Detecting Fraud in Real Twitter Data

e Found 4031x4313
size block of

followers-followees
with 68% density

 Users detected as
fraudulent by
Fraudar are more
likely to be deleted,
suspended, use
Twitter user buying
Services.

Follower-buying services in
detected users vs. controls

o
o

ot
N

I

——) e
Control group Detected by
Fraudar

Fraction of confirmed fraudsters
=) =)
o H
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Summary

Spectral methods

— Spectral clustering and community detection
Spectral subspaces and spectral subspace plots
EigenSpokes (singular vectors and “spokes”)

Lockinfer (“camouflage”, “fame”, “pearls”, “staircase”,
etc.)

fBox (small-scale, stealthy attacks; reconstructed
degrees)

FRAUDAR (theoretical guarantees for bounding graph
fraud in the face of camouflage)

Applications: Mobile calls, Twitter social network, “user-
product” reviews
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