Tutorial: Data-Driven Approaches towards Malicious Behavior Modeling

Meng Jiang
University of Notre Dame

Srijan Kumar
Stanford University

Christos Faloutsos
Carnegie Mellon University

V.S. Subrahmanian
University of Maryland, College Park

Outline

Introduction

Feature-based algorithms

Spectral-based algorithms

Density-based algorithms

Sockpuppets

Vandals

Hoaxes

Visualization: “spokes”, “blocks”, “staircases”

Camouflage

Theoretical guarantee

Ill-gotten Likes

Synchronized Behaviors

Advertising campaigns

Social spam

Conclusions and future directions

How to get spectral subspaces?

• Frequency components \rightarrow Principal Component Analysis (PCA): Eigenvectors

$$\text{Data matrix: } A$$

Squared covariance matrix or affinity matrix: C

$$Cv = \lambda v$$

• Other spectral decomposition methods. Singular Value Decomposition (SVD): Singular vectors

$$A \sim U\Sigma V^T$$

Data matrix: A

$$U \text{ (left singular vector matrix)}$$

$$V \text{ (right singular vector matrix)}$$
Spectral methods: Community Identification

Nodes are USA college football teams and edges represent which team played with which other team.

Communities represent groups of frequently co-playing teams.

Spectral methods: Anomaly detection

Leading eigenvector (blue for one, red for other)

Malicious data points (users, behaviors, communities, etc.)

Normal data points

Potential application: anomaly detection

Spectral-based methods

• Advantages
 – Visualization: tunable value of \(k = \) number of subspaces
 – Feature extraction by data distribution rather than manual or automatic selection
 – “Principal” components represent “leading” vectors
 – Data: Can easily work with N-by-N graphs, N-by-N-by-N tensors
 – Applications: Finding communities and anomalies

• Disadvantages
 – Lack of interpretability of the subspaces/features
Finding Surprising Spectral Patterns in Large Graphs

- **Problem definition:** Given a social graph based on mobile calls made from/to callers, find caller communities.
- **Dataset:** Activity over the duration of a month, 186,000 nodes and 464,000 edges.
- **Key contribution:** Discovery of the “spokes” phenomenon
 - The singular vectors of the graph, when plotted against each other, often have clear separate lines, typically aligned with axes.
 - Use EigenEigen (EE) plots to identify communities in the form of **cliques** or **near-cliques**, **perfect or near-perfect bipartite-cores**.

Spokes and Dense Cliques

V-V plots: Right spectral subspaces

Spokes

Subgraphs of nodes identified as important by different V vectors: all are tightly knit

(a) EE-plot

(b) Spy Plots of Sub-graph of Top 20 Nodes

Long vs. Short?

Tilted?

Prakash, et al. (PAKDD 2010)
Spectral subspace

• What is the meaning of spokes, elongated spokes, tilted spokes?
• Are there other patterns?
• Can these patterns be used to identify malicious behavior?
Inferring Lockstep Behavior from Connectivity Patterns

- Problem definition: Given a large graph, from **spectral subspace plots**, can we infer **lockstep behavior** patterns?

Problem definition: Given a large graph, from **spectral subspace plots**, can we infer **lockstep behavior** patterns?

“Camouflage”: fraudsters follow other users to hide their behavior

“Fame”: popular users are followed by several users

Jiang, et al. (KAIS 2016)
Problem definition: Given a large graph, from spectral subspace plots, can we infer lockstep behavior patterns?

Jiang, et al. (KAIS 2016)
Case 0: No lockstep behavior

- No blocks in adjacency matrix lead to scattering and no patterns in spectral subspace

Adjacency Matrix

Spectral Subspace Plot

Jiang, et al. (KAIS 2016)
Case 1: Non-overlapping dense lockstep

- Dense blocks in adjacency matrix generates “rays” in spectral subspace

Rule 1 (short “rays”): two blocks, high density (90%), no “camouflage”, no “fame”

Jiang, et al. (KAIS 2016)
Case 2: Non-overlapping sparse lockstep

- Low density blocks in adjacency matrix leads to elongation of rays, indicating more varied behavior

Rule 2 (long “rays”): two blocks, low density (50%), no “camouflage”, no “fame”
Case 3: Non-overlapping lockstep with outside edges

- Edges to or from blocks in adjacency matrix leads to tilting of rays in spectral subspace
- Edges going out of block: “camouflage” by fraudsters
- Edges into the block: “fame” edges to popular users

Rule 3 (tilting “rays”): two blocks, with “camouflage”, no “fame”
Case 4: Overlapping lockstep

- “Staircase”, i.e. sequentially overlapping blocks, in adjacency matrix generates “Pearls” in spectral subspace

Adjacency Matrix with staircase

Spectral subspace plot showing pearls

Rule 4 ("pearls"): a “staircase” of three partially overlapping blocks.

Jiang, et al. (KAIS 2016)
LockInfer Algorithm: Reading Spectral Subspace Plots

Spectral Subspace Plot

Polar Coordinate Transform

Histograms

“rays” show two apparent spikes on θ frequency at 0° and 90°

“pearls” show a spike on r frequency at a much-greater-than-zero value
Spotting Small-Scale, Stealthy Attacks

• **Problem definition:** Can we catch stealthy attacks that are missed by traditional spectral methods?

• **Dataset:** Twitter “who-follows-whom” social graph, 41.7 million nodes, 1.5 billion edges

fBox: Reconstructed Degrees

Data matrix: A

SVD

$A \sim U \Sigma V^T$

Reconstructed out-degree(i) = $\|U\Sigma_i\|_2$

Reconstructed in-degree(j) = $\|V\Sigma_j\|_2$

Shah, et al. (ICDM 2014)
Norm-Preserving Property of SVD

• The row vectors of a full rank decomposition and associated projection will retain the same $L2$ norm or vector length as in the original space:
 – For $k = \text{rank}(A)$, $\|A_i\|_2 = \|(U\Sigma)_i\|_2$ and $\|A^T_j\|_2 = \|(V\Sigma)_j\|_2$

• So, compare:
 – Reconstructed out-degree vs. real out-degree
 – Reconstructed in-degree vs. real in-degree
Why does fBox work?

For $k < \text{rank}(A)$, dishonest users’ reconstruction is poor compared to that of honest users.

- Dishonest users who either form isolated components or link to dishonest objects will project poorly and have characteristically low reconstruction degrees.

- Honest users who are well-connected to real products and brands should project more strongly and have characteristically higher reconstruction degrees.
Reconstructed out-degree vs. Real out-degree

Shah, et al. (ICDM 2014)
Reconstructed in-degree vs. Real in-degree

Shah, et al. (ICDM 2014)
Reconstructed in-degree vs. Real in-degree (cont.)

Shah, et al. (ICDM 2014)
Bounding Graph Fraud in Camouflage

• An application: Fake reviews

I will do 5 five star reviews, all from real profiles

Order Now ($5)

“User-Product” Review Graph

- **Problem definition:** Given a “user-product” review graph, can we spot fraudsters and customers?

- **Diagram:**
 - **Users**
 - **Fraudsters**
 - **Honest users**
 - **Fraudsters**
 - **Customers** (products whose owners buy fake reviews)

Hooi, et al. (KDD 2016)
Camouflage: Evading Detection

Random camouflage

Hijacked user accounts

“camouflage” in LockInfer

“Fame” in LockInfer

Hooi, et al. (KDD 2016)
Formal Problem Definition

• Given:
 – Bipartite graph between users and products
 – May have prior node suspiciousness scores

• Develop detection metric that is:
 – Camouflage-resistant
 – Near-linear time
 – Offers provable bounds
 – Works well in practice

Hooi, et al. (KDD 2016)
Suspiciousness Metric

g(A, B) is a density metric for edges from set of users A to set of products B.

Hooi, et al. (KDD 2016)
Camouflage-Resistance

Metric g is **camouflage-resistant** if $g(A,B)$ does not decrease when camouflage is added to A.

Hooi, et al. (KDD 2016)
Proposed Suspiciousness Metric

“Average suspiciousness” \(g(A,B) \)

\[
= \frac{\text{(sum of node susp.)} + \text{(sum of edge susp.)}}{|A| + |B|}
\]

Users

Products

Edge scores \(c_{ij} \)

Missing edge

Node scores \(a_i \)

\[
g(A,B) = \frac{10 + 25}{7} = \frac{35}{7}
\]
Edge Scores c_{ij}

Proposed weighting scheme:

$$c_{ij} = \frac{1}{\log(\text{unweighted sum of } j\text{-th column})}$$

Why?

- Popular products are not necessarily suspicious
- Fraudulent products have a high fraction of edges from fraudsters

Honest users

Fraudsters
Average suspiciousness $g(A,B)$:

- Can be optimized in near-linear time
- Provable bounds
- Camouflage-resistant
- Works in practice

Hooi, et al. (KDD 2016)
FRAUDAR: Greedy Algorithm

• Start with sets A, B as all users / products
FRAUDAR: Greedy Algorithm (cont.)

• Delete rows / columns greedily to maximize g (average suspiciousness)

Hooi, et al. (KDD 2016)
FRAUDAR: Greedy Algorithm (cont.)

- Delete rows / columns greedily to maximize g (average suspiciousness)
FRAUDAR: Greedy Algorithm (cont.)

- Delete rows / columns greedily to maximize g (average suspiciousness)

Hooi, et al. (KDD 2016)
FRAUDAR: Greedy Algorithm (cont.)

- Delete rows / columns greedily to maximize g (average suspiciousness)

Hooi, et al. (KDD 2016)
FRAUDAR: Greedy Algorithm (cont.)

- Continue until A and B are empty
FRAUDAR: Greedy Algorithm (cont.)

- Return the best subsets A and B seen so far (based on g)
Computation Time

- $O(|E| \log(|V|))$: using appropriate data structures

![Graph showing linear time complexity](image-url)
Metric Properties

Average suspiciousness $g(A,B)$:
- ✔ Can be optimized in near-linear time
- ☐ **Provable bounds**
- ☐ Camouflage-resistant
- ☐ Works in practice

Hooi, et al. (KDD 2016)
Theoretical Guarantee

• Theorem 1: The subgraph \((A, B)\) returned by FRAUDAR satisfies

\[
g(A \cup B) \geq \frac{1}{2} g_{OPT}
\]

FRAUDAR subgraph \quad Optimum value of \(g\)

Hooi, et al. (KDD 2016)
Metric Properties

Average suspiciousness $g(A,B)$:
- ✓ Can be optimized in near-linear time
- ✓ Provable bounds
- □ Camouflage-resistant
- □ Works in practice

Hooi, et al. (KDD 2016)
Camouflage Resistance

• Theorem 2: If c_{ij} is a column weighting (i.e. c_{ij} is any function of the j-th column), then g is camouflage-resistant.

$\text{Camouflage} \quad (c_{ij} = 1 / \log(\text{sum of j-th column}) \text{ satisfies this})$
Metric Properties

Average suspiciousness \(g(A,B) \):
- ✔️ Can be optimized in near-linear time
- ✔️ Provable bounds
- ✔️ Camouflage-resistant
- □ Works in practice

Hooi, et al. (KDD 2016)
Experiments: Detecting Injection of Various Types of “Camouflage”

- Amazon Review Graph: 24K users, 4K products
- Injected 200 x 200 blocks with various types of camouflage
 - None
 - Random camouflage
 - Biased camouflage
 - Hijacked accounts

Hooi, et al. (KDD 2016)
Experiments: Detecting Injection of Various Types of “Camouflage”

- Amazon Review Graph: 24K users, 4K products
- Injected 200 x 200 blocks with various types of camouflage
 - None
 - **Random camouflage**
 - Biased camouflage
 - Hijacked accounts

Hooi, et al. (KDD 2016)
Experiments: Detecting Injection of Various Types of “Camouflage”

- Amazon Review Graph: 24K users, 4K products
- Injected 200 x 200 blocks with various types of camouflage
 - None
 - Random camouflage
 - Biased camouflage
 - Hijacked accounts

Hooi, et al. (KDD 2016)
Experiments: Detecting Injection of Various Types of “Camouflage”

- Amazon Review Graph: 24K users, 4K products
- Injected 200 x 200 blocks with various types of camouflage
 - None
 - Random camouflage
 - Biased camouflage
 - Hijacked accounts

Hooi, et al. (KDD 2016)
Accuracy on Detecting Injected Fraud

Accuracy on injected fraud – Amazon data

Detection Method
- FRAUDAR
- SpokEN

Camouflage Method
- None
- Random
- Biased
- Hijacked

Accuracy (F measure)

Density of injected subgraph
Accuracy on Detecting Fraud in Real Twitter Data

- Found 4031x4313 size block of followers-followees with 68% density
- Users detected as fraudulent by Fraudar are more likely to be deleted, suspended, use Twitter user buying services.
Summary

• Spectral methods
 – Spectral clustering and community detection
• Spectral subspaces and spectral subspace plots
• EigenSpokes (singular vectors and “spokes”)
• LockInfer (“camouflage”, “fame”, “pearls”, “staircase”, etc.)
• fBox (small-scale, stealthy attacks; reconstructed degrees)
• FRAUDAR (theoretical guarantees for bounding graph fraud in the face of camouflage)
• Applications: Mobile calls, Twitter social network, “user-product” reviews
References

• Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. “Inferring lockstep behavior from connectivity pattern in large graphs”, KAIS 2016.
• Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos. “Spotting suspicious link behavior with fBox: An adversarial perspective”, ICDM 2014.
Tutorial: Data-Driven Approaches towards Malicious Behavior Modeling

Meng Jiang
University of Notre Dame

Srijan Kumar
Stanford University

Christos Faloutsos
Carnegie Mellon University

V.S. Subrahmanian
University of Maryland, College Park