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I. Mining behavior networks with
social and spatiotemporal contexts
I.1. Behavior prediction and recommendation
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Behavior in Social Networks
qFacebook: Post, Like, Comment, Share

qTwitter: Post, Reply, Retweet, Favorite

qYouTube: Upload, Subscribe, Download, Share, Comment
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Behavior in Social Networks
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Social Recommender Systems

5
Facebook

Twitter

YouTube

Pinterest



Social Recommender Systems
qApril 20, 2011: Tencent Weibo visited Tsinghua University

qLow conversion rate (< 6%): #retweets per feed request
qCan we build a social recommender system?
qGiven

qPredict which tweet/item a user will retweet.
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Traditional Recommender Systems
qAssumed that users are independent and identically 

distributed (user-movie, user-book, etc.)
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Traditional Recommender Systems
qContent-based recommender (e.g., TF-IDF)

qFor textual information (e.g., news, documents)
qLimitation: limited content analysis, over-specialization

qCollaborative filtering based recommender
qMemory-based CF (e.g., PCC, similarity)
qModel-based CF (e.g., factorization based)
qLimitation: data sparsity, cold-start problem

qHybrid recommender system
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Tang et al. Social Recommendation: A Review. Social Network Analysis and Mining, 
2013. Springer.



Matrix Factorization (MF) based CF
qLow-rank MF on the user-item rating matrix R
qUser preference vector U
qItem characteristic vector V
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R U VT

Koren. Factorizatoin Meets the Neighborhood: A Multifaceted Collaborative 
Filtering Model. KDD, 2008.



Matrix Factorization (MF) based CF
qLow-rank MF on the user-item rating matrix R
qUser preference vector U
qItem characteristic vector V
qObserved weight matrix W
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avoid over-fitting,
controlled by the parameter



Social Recommendation
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Social relations



Memory based Social Recommender
qTidalTrust

12

rating
(user s, item m)

rating
(user i, item m)

trust from social relation
(user s, user i)

Golbeck. Personalizing applications through integration of inferred trust values in 
semantic web-based social networks. Semantic Network Analysis Workshop, 2005.



Memory based Social Recommender
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qMoleTrust

predicted rating
(user a, item i)

average rating
(user a)

trust from social relation
(user a, user u)

rating
(user u, item i)

average rating
(user u)

Massa et al. Trust-aware recommender systems. RecSys, 2007.



Memory based Social Recommender
qTrustWalker
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similarity measure
(item i, item j)

Pearson correlation
of (item i, item j)

common user set
of (item i, item j)

probability of
user u’s random walk
from item i to item j

Jamali et al. TrustWalker: A Random Walk Model for Combining Trust-based and
Item-based Recommendation. KDD, 2009.



Model based Social Recommender
qOptimization methods such as gradient based 

methods can be applied to find a well-worked 
optimal solution.

qMF has a nice probabilistic interpretation with 
Gaussian noise.

qMF is very flexible and allows us to include prior 
knowledge.
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Tang et al. Social Recommendation: A Review. Social Network Analysis and Mining, 
2013. Springer.

Social Recommendation CF
=  Basic CF + Social Information Model



Model based Social Recommender
qSoRec
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user vector

factor vector

item vector

R: user-item
rating matrix

C: user-user
social matrix

Ma et al. Social Recommendation Using Probabilistic Matrix Factorization. CIKM, 2008.
Improving Recommender Systems by Incorporating Social Contextual Information. TIS, 2011.



Model based Social Recommender
qSoRec
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R
Gaussian distribution

Logistic function Observed



Model based Social Recommender
qSoRec
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behavioral term
social term

regularization terms



Model based Social Recommender
qSoRec
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Gradient Descent Methods

deviate of
Logistic
function



Model based Social Recommender
qSoRec
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Model based Social Recommender
qReplacing social with trust
q“Social Trust” Ensemble for Epinion data
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From user-item
matrix From trusted friends

Operation “plus”
Ma et al. Learning to Recommend with Social Trust Ensemble. SIGIR, 2009.
Learning to Recommend with Explicit and Implicit Social Relations. TIST, 2011.



Model based Social Recommender
q“Social Trust” Ensemble
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From user-item
matrix From trusted friends



Model based Social Recommender
q“Social Trust” Ensemble
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Gradient
Descent
Methods



Model based Social Recommender
qSoReg

24Ma et al. Recommender Systems with Social Regularization. WSDM, 2011.

Average-based regularization:
Regularize with the average of friends’ tastes

Information loss: Friends may have diverse tastes!!!



Model based Social Recommender
qSoReg
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Individual-based regularization:
Regularize with friends individually



Related Work

qQ: What are the factors of users’ decisions on retweeting?
Can we observe them from the data? How to integrate the
information for accurate prediction?
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Behavior Content Social Trust
Collaborative filtering (CF) [Herlocker et al. 
TOIS; Koren KDD]

✔

Content-based filtering with CF
[Balabanovic et al.; Liu et al. CIKM;]

✔ ✔

SoRec [Ma et al. CIKM, TIS]
SoReg [Ma et al. WSDM]

✔ ✔

Trust-based methods [Massa et al. RecSys; 
Jamali et al. KDD; Ma et al. SIGIR, TIST]

✔ ✔



Observation: Social Contextual Factors

qWill Michelle Obama share this message?
qPlease list your reasons.
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Jiang et al. Social Contextual Recommendation. CIKM, 2012.
Social Recommendation with Contextual Information. TKDE, 2014.



Observation: Social Contextual Factors
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Representation: From Contextual
Information to Contextual Factors
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Behavior
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Social
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Personal preference
on the given item
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Item latent features V
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Model: ContextMF
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Model: ContextMF
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interaction frequency/trust
item content
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Model: ContextMF
qGradient descent method
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Experimental Results
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vs. SoReg
[TIST’11]

Renren Tencent
Weibo

MAE ↓19.1% ↓24.2%

RMSE ↓12.8% ↓20.7%

Kendall’s ↑9.82% ↑2.1%

Spearman’s ↑10.6% ↑3.1%

qDeployed in Weibo News
Feed. Improved conversion
rate from 5.78% to 8.27%
(relatively 43%).

q#citations = 149



Observation: Spatial Context
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Who post?

With whom?
DevicePlace

Photo

Text

post

Jan. 18
Birthday party
@ White house

Jiang et al. Flexible Evolutionary Multi-faceted Analysis for Dynamic Behavioral
Pattern Discovery. KDD, 2014.



Observation: Temporal Context
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Representation: Tensor Sequence
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Challenges: Sparsity and Complexity
qAddressing sparsity: Flexible regularization with

auxiliary data
qAddressing high complexity: Incremental updates

for projection matrix
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Model: FEMA
Flexible Evolutionary Multi-faceted Analysis
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Tensor Perturbation Theory
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Algorithm: FEMA
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Bound GuaranteeApproximation

core tensor

projection matrix



Results: FEMA > EMA > EA
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Microsoft Academic Search Tencent Weibo mentions “@”
MAE RMSE MAE RMSE

FEMA 0.735 0.944 0.894 1.312

EMA 0.794 1.130 0.932 1.556

EA 0.979 1.364 1.120 1.873

Precision
vs
Recall

X L

X

X



Results: Efficiency
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Evolutionary analysis:
Use ΔX to update λ and a

Re-decomposition:
Re-compute projection matrices

Evolutionary analysis:
Use ΔX to update λ and a
Re-decomposition:
Re-compute projection matrices



Observation: Multiple Domains
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Jiang et al. Social Recommendation across Multiple Relational Domains. CIKM, 2012.
Social Recommendation with Cross-Domain Transferable Knowledge. TKDE, 2015.



Representation: Star-Structured Graph
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Representation: Social Bridge
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Rtgt Raux1

Raux3 Raux2

Bridge: Tie strength



Algorithm: Hybrid Random Walk
qUpdating cross-domain links

qUpdating within-domain links
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Results
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Comparing with Random Walk with Restarts Models

Comparing with Social Recommendation Baselines



Results: Insight
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qKnowledge transfer from auxiliary domains 
improves cold-start users’ behavior prediction
qUsing aux. (label) data, saving 60-70% tgt. (post) data

35% user-post
0 user-label

60% user-post
0 user-label

0 user-post
100% user-label

18% user-post
100% user-label



Observation: Multiple Platforms
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Jiang et al. Little is Much: Bridging Cross-Platform Behaviors through Overlapped 
Crowds. AAAI, 2016.



Observation: Cross-Platform
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Observation: Partially Overlapped Crowds
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Representation: When NO Transfer
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C
A

B

Sina Weibo
users

Douban
users

Sina Weibo
tags/entities

Douban
movies/books

User
set

Weibo tweet entity to
Douban movie
RMSE MAP

A Auxiliary platform data!
C 0.779 0.805
B 1.439 0.640

User
set

Douban book to
Weibo social tag
RMSE MAP

A 0.429 0.464
C 0.267 0.666
B Auxiliary platform data!



Algorithm: XPTrans
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Algorithm: XPTrans
qInput

qTgt./Aux. platform P/Q;
qBehavior data R(P)/R(Q);
qObservation W(P)/W(Q);
qOverlapping indicator W(P,Q),

qOutput
qUser latent representation 

U(P)/U(Q);
qItem latent representation 

V(P)/V(Q);
qMissing values in R(P)

qObjective function
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Target platform Auxiliary platform

Overlapping user similarity
(Pair-wise regularization)



Results: Leveraging Auxiliary Platform Data
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User
set

Weibo tweet entity to
Douban movie
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A Auxiliary platform data!
C 0.779 0.805
B 1.439 0.640

User
set

Douban book to
Weibo social tag
RMSE MAP

A 0.429 0.464
C 0.267 0.666
B Auxiliary platform data!

User
set

Weibo tweet entity to
Douban movie
RMSE MAP

A
C 0.757 0.811
B 1.164 (-19%) 0.702 (+9.7%)

User
set

Douban book to
Weibo social tag
RMSE MAP

A 0.411 (-4.2%) 0.487 (+5.0%)
C 0.256 0.681
B

NO Transfer Transfer via the Same
Latent Space



Results: Leveraging Different Latent Spaces
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RMSE MAP

A
C 0.715 0.821
B 0.722 (-38%) 0.820 (+17%)
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A 0.374 (-11%) 0.533 (+12%)
C 0.236 0.705
B

Transfer via Different
Latent Spaces
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Results: Where Amazing Happens
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Results: Different Sizes of Latent Spaces
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Summary
qLike, Reply, Share, Retweet, Favorite, Comment …
qMemory based social recommenders

qTidalTrust, MoleTrust, TrustWalker
qModel based social recommenders

qSoRec, “Social Trust” Ensemble, SoReg
qObservations, Representations, Models

qContextMF: Social contexts (preference & influence)
qFEMA: Spatiotemporal contexts (multidimensional)
qHybridRW: Cross-domain behavior modeling
qXPTrans: Cross-platform behavior modeling
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Thank you!

Data-Driven Behavioral Analytics:
Observations, Representations and Models
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