

Data-Driven Behavioral Analytics: Observations, Representations and Models

Meng Jiang (UIUC) Peng Cui (Tsinghua) Jiawei Han (UIUC)

http://www.meng-jiang.com/tutorial-cikm16.html

Tutorial in CIKM 2016, October 24, Indianapolis, IN

I. Mining behavior networks with social and spatiotemporal contexts I.1. Behavior prediction and recommendation

3

O Media

Q Location

Upload

Behavior in Social Networks

Facebook: Post, Like, Comment, Share

Update Status Add Photos/Video Create Photo Album	132 Likes 20 Comments			
What's on your mind?	┢ Like	Comr	nent	Share
Public				
Twitter: Post, Reply, Retweet	,Favorite			
What's happening?			11	1 1 1 1 1 1
	•	17 5	* 7	•••

□YouTube: Upload, Subscribe, Download, Share, Comment

140

CS ILLINOIS

Behavior in Social Networks

Like Reply Share Favorite Retweet Comment Subscribe Download Add to Send Pin it Visit

CS ILLINOIS

Social Recommender Systems

CS ILLINOIS

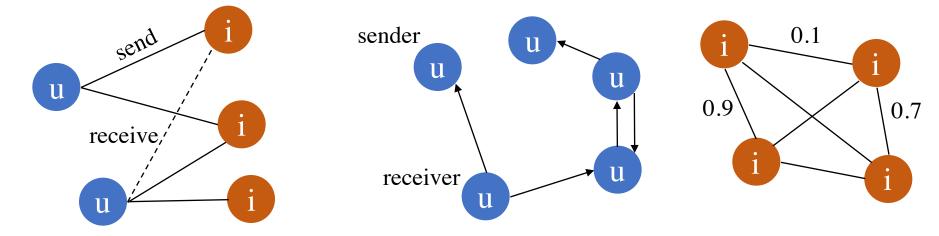
Social Recommender Systems

April 20, 2011: Tencent Weibo visited Tsinghua University
 Low *conversion rate* (< 6%): #retweets per feed request
 Can we build a *social recommender system*?
 Given

User-item behavior network

User-user social network

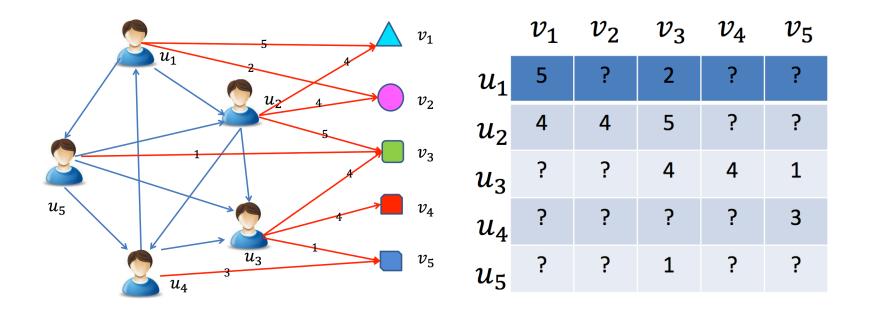
Content similarity (topic level) [Blei *et al.*]



Predict which tweet/item a user will retweet.

Traditional Recommender Systems

Assumed that users are independent and identically distributed (user-movie, user-book, *etc*.)



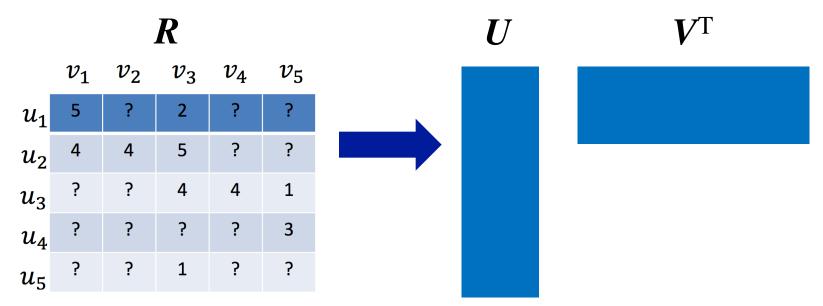
Traditional Recommender Systems

Content-based recommender (e.g., TF-IDF)
 For textual information (e.g., news, documents)
 Limitation: limited content analysis, over-specialization
 Collaborative filtering based recommender
 Memory-based CF (e.g., PCC, similarity)
 Model-based CF (e.g., factorization based)
 Limitation: data sparsity, cold-start problem
 Hybrid recommender system

Tang et al. Social Recommendation: A Review. Social Network Analysis and Mining,2013. Springer.

Matrix Factorization (MF) based CF

- Low-rank MF on the user-item rating matrix RUser preference vector U
- \Box Item characteristic vector V



Koren. Factorizatoin Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. *KDD*, 2008.

Matrix Factorization (MF) based CF

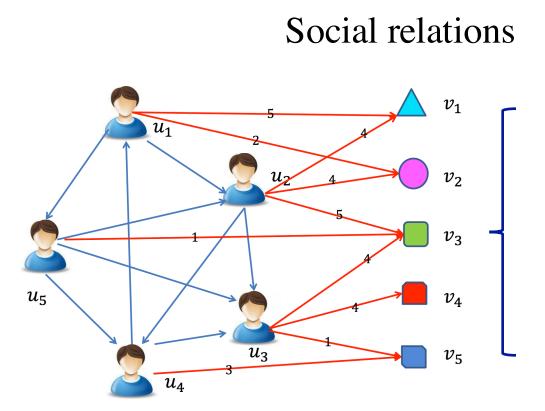
- \Box Low-rank MF on the user-item rating matrix R
- \Box User preference vector U
- \Box Item characteristic vector V
- \Box Observed weight matrix W

$$\min_{\mathbf{U},\mathbf{V}} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{W}_{ij} (\mathbf{R}_{ij} - \mathbf{U}_i \mathbf{V}_j^{\top})^2 + \alpha(\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2)$$

avoid over-fitting, controlled by the parameter

DATA MINING GROUP

Social Recommendation

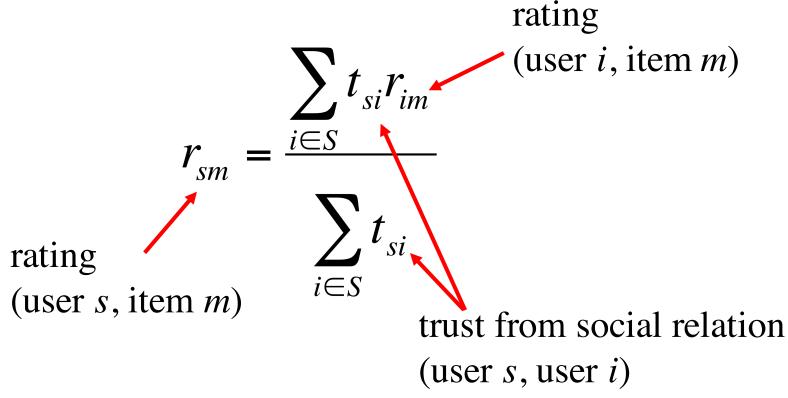


	u_1	<i>u</i> ₂	u_3	u_4	u_5
u_1	0	1	0	0	1
u_2	0	0	1	1	0
u_3	0	0	0	0	0
u_4	1	0	1	0	0
u_5	0	1	1	1	0

	v_1	v_2	v_3	v_4	v_5
u_1	5	?	2	?	?
u_2	4	4	5	?	?
u_3	?	?	4	4	1
u_4	?	?	?	?	3
u_5	?	?	1	?	?

Memory based Social Recommender

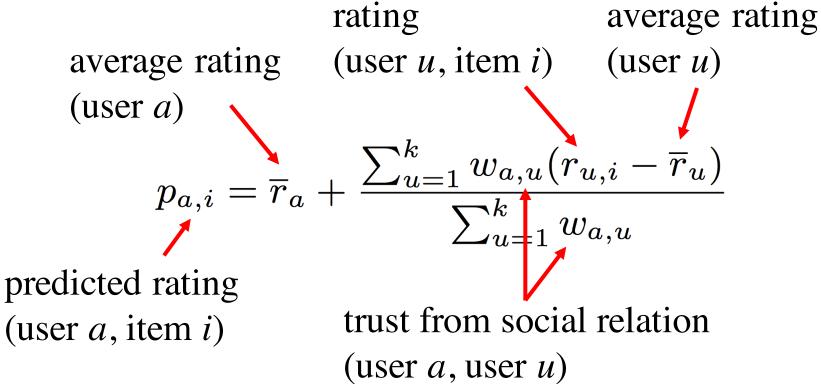
TidalTrust



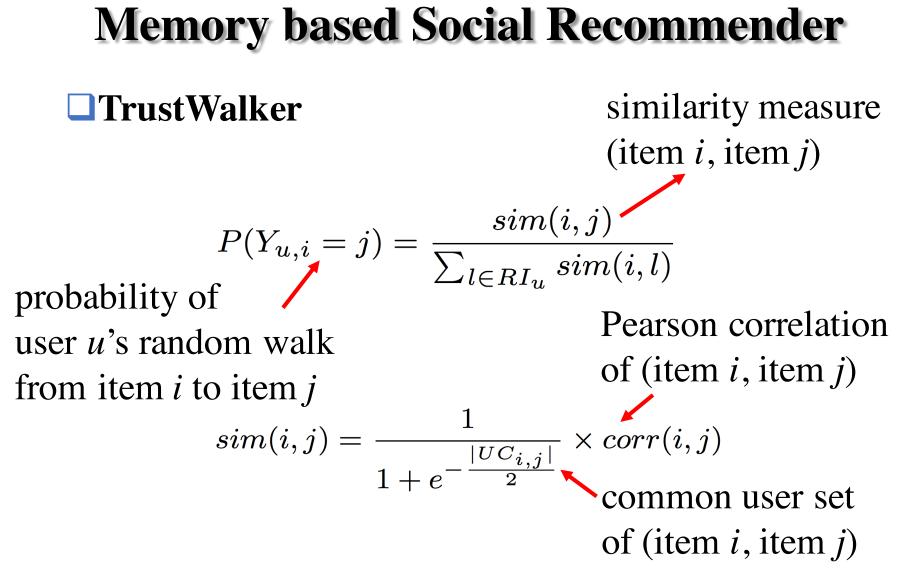
Golbeck. Personalizing applications through integration of inferred trust values in semantic web-based social networks. *Semantic Network Analysis Workshop*, 2005.

Memory based Social Recommender

MoleTrust



Massa et al. Trust-aware recommender systems. RecSys, 2007.



Jamali et al. TrustWalker: A Random Walk Model for Combining Trust-based and Item-based Recommendation. *KDD*, 2009. 14

Model based Social Recommender

Optimization methods such as gradient based methods can be applied to find a well-worked optimal solution.

■MF has a nice probabilistic interpretation with Gaussian noise.

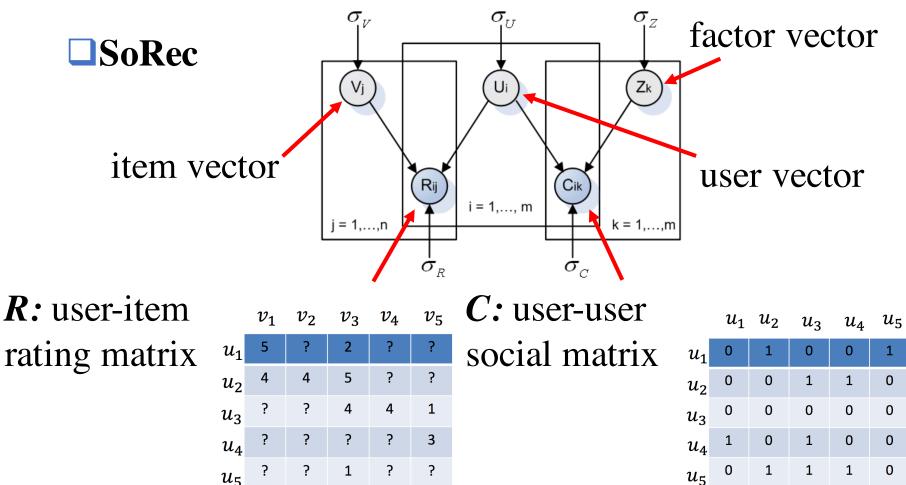
■MF is very flexible and allows us to include prior knowledge.

Social Recommendation CF = Basic CF + Social Information Model

Tang et al. Social Recommendation: A Review. Social Network Analysis and Mining,2013. Springer.15

CS ILLINOIS

Model based Social Recommender



Ma et al. Social Recommendation Using Probabilistic Matrix Factorization. *CIKM*, 2008. Improving Recommender Systems by Incorporating Social Contextual Information. *TIS*, 2011.16

I

 σ_{V}

 (V_j)

j = 1,...,n

(Rij

Model based Social Recommender

SoRec

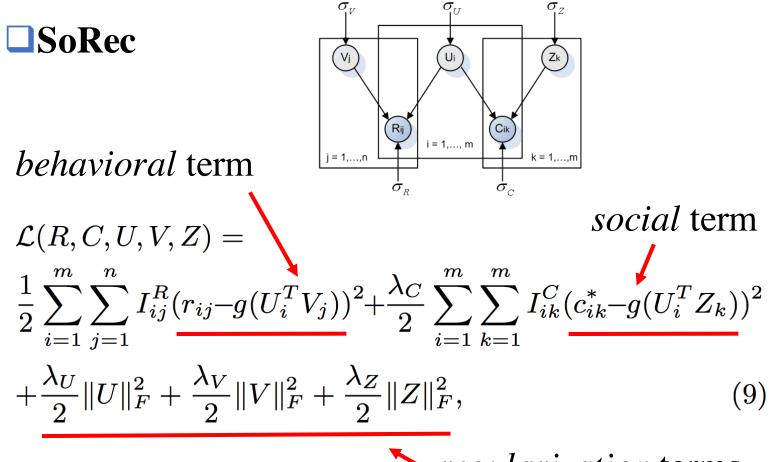
 σ

i = 1.

$$p(\mathbf{C}|U, V, \sigma_{R}^{2}) = \prod_{i=1}^{m} \prod_{j=1}^{n} \mathcal{N} \left[\left(r_{ij} | g(U_{i}^{T} V_{j}), \sigma_{R}^{2} \right) \right]^{I_{ij}^{R}}$$
Gaussian distribution
Logistic function Observed
$$p(C|U, Z, \sigma_{C}^{2}) = \prod_{i=1}^{m} \prod_{k=1}^{m} \mathcal{N} \left[\left(c_{ik} | g(U_{i}^{T} Z_{k}), \sigma_{C}^{2} \right) \right]^{I_{ik}^{C}}$$

CS ILLINOIS

Model based Social Recommender



regularization terms

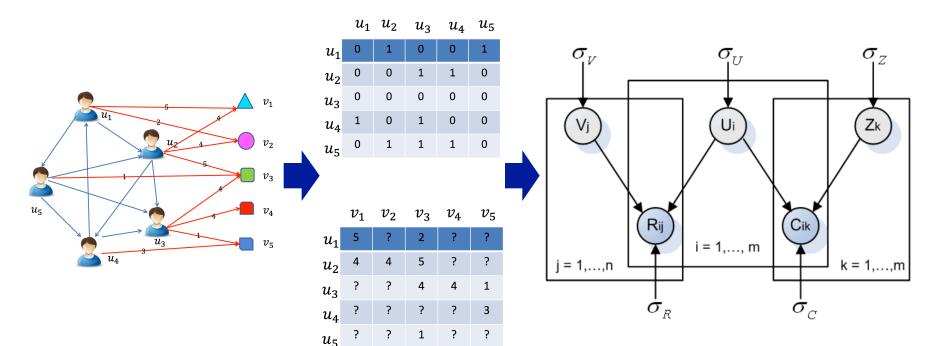
Model based Social Recommender

Gradient Descent Methods $\frac{\partial \mathcal{L}}{\partial U_i} = \sum_{i=1}^{R} I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j$ deviate of + $\lambda_C \sum_{i=1} I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i,$ Logistic function $\frac{\partial \mathcal{L}}{\partial V_i} = \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j,$ $\frac{\partial \mathcal{L}}{\partial Z_k} = \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k, (10)$

I

Model based Social Recommender

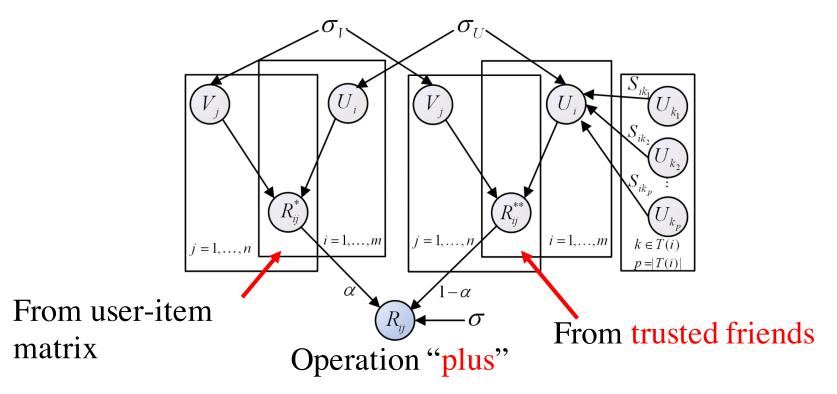
SoRec



Model based Social Recommender

Replacing social with trust

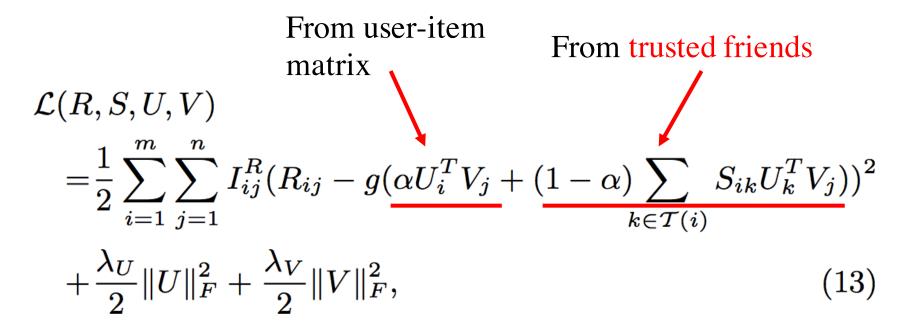
Generation Content of Social Trust' Ensemble for Epinion data



Ma et al. Learning to Recommend with Social Trust Ensemble. *SIGIR*, 2009. Learning to Recommend with Explicit and Implicit Social Relations. *TIST*, 2011.

Model based Social Recommender

Generation Social Trust' Ensemble



Model based Social Recommender

"Social Trust" Ensemble

Gradient

Descent

Methods

 $\frac{\partial \mathcal{L}}{\partial U_i} = \alpha \sum_{i=1}^n I_{ij}^R g'(\alpha U_i^T V_j + (1-\alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j) V_j$ $\times \left(g(\alpha U_i^T V_j + (1-\alpha)\sum S_{ik} U_k^T V_j) - R_{ij}\right)$ $k \in \mathcal{T}(i)$ $+(1-\alpha)\sum \sum_{j=1}^{n} I_{pj}^{R}g'(\alpha U_{p}^{T}V_{j}+(1-\alpha)\sum_{j=1}^{n} S_{pk}U_{k}^{T}V_{j})$ $p \in \mathcal{B}(i)$ i=1 $\times (g(\alpha U_p^T V_j + (1 - \alpha) \sum S_{pk} U_k^T V_j) - R_{pj}) S_{pi} V_j + \lambda_U U_i,$ $k \in \mathcal{T}(p)$ $\frac{\partial \mathcal{L}}{\partial V_{i}} = \sum_{k=1}^{m} I_{ij}^{R} g'(\alpha U_{i}^{T} V_{j} + (1-\alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j})$ $\times \left(g(\alpha U_i^T V_j + (1-\alpha)\sum S_{ik} U_k^T V_j) - R_{ij}\right)$ $k \in \mathcal{T}(i)$ $\times (\alpha U_i + (1 - \alpha) \sum S_{ik} U_k^T) + \lambda_V V_j,$ (14) $k \in \mathcal{T}(i)$

Model based Social Recommender

SoReg

Average-based regularization:

Regularize with the average of friends' tastes

$$\min_{U,V} \mathcal{L}_{1}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f)} \|_{F}^{2}, + \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2}.$$
(8)

Information loss: Friends may have diverse tastes!!!

Ma et al. Recommender Systems with Social Regularization. WSDM, 2011. 24

Model based Social Recommender

SoReg

Individual-based regularization: Regularize with friends individually

$$\min_{U,V} \mathcal{L}_2(R, U, V) = \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^n I_{ij} (R_{ij} - U_i^T V_j)^2$$

$$2 \sum_{i=1}^{m} \sum_{j=1}^{m} if(i) = if(i)$$

- $\frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^+(i)} Sim(i, f) ||U_i - U_f||_F^2$

+
$$\lambda_1 \|U\|_F^2 + \lambda_2 \|V\|_F^2$$
. (11)

Related Work

	Behavior	Content	Social	Trust
Collaborative filtering (CF) [Herlocker <i>et al</i> . TOIS; Koren KDD]	~			
Content-based filtering with CF [Balabanovic <i>et al.</i> ; Liu <i>et al.</i> CIKM;]	~	 		
SoRec [Ma <i>et al</i> . CIKM, TIS] SoReg [Ma <i>et al</i> . WSDM]	~		~	
Trust-based methods [Massa <i>et al</i> . RecSys; Jamali <i>et al</i> . KDD; Ma <i>et al</i> . SIGIR, TIST]	~			~

□**Q**: What are the **factors** of users' decisions on retweeting? Can we **observe** them from the data? How to **integrate** the information for accurate prediction?

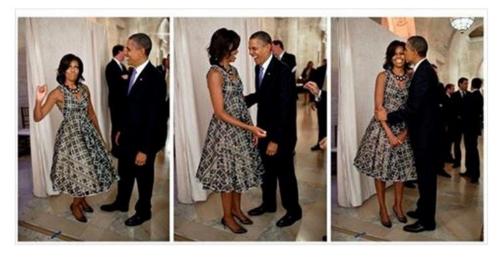
Observation: Social Contextual Factors

Will Michelle Obama share this message?Please list your reasons.

Barack Obama Happy birthday, Michelle Obama!

Like · Comment · Share · January 18, 2013

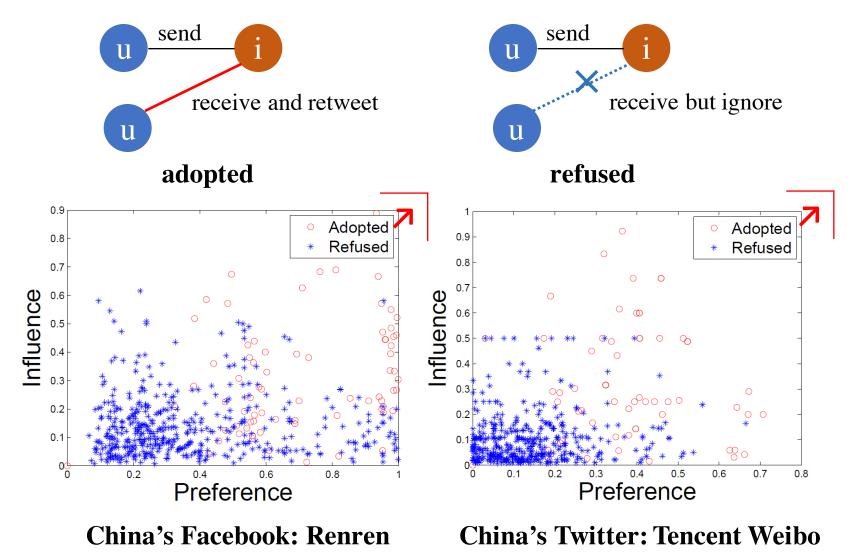
Michelle Obama shared Barack Obama's photo. January 18, 2013 · 🛞



Jiang et al. Social Contextual Recommendation. *CIKM*, 2012. Social Recommendation with Contextual Information. *TKDE*, 2014.

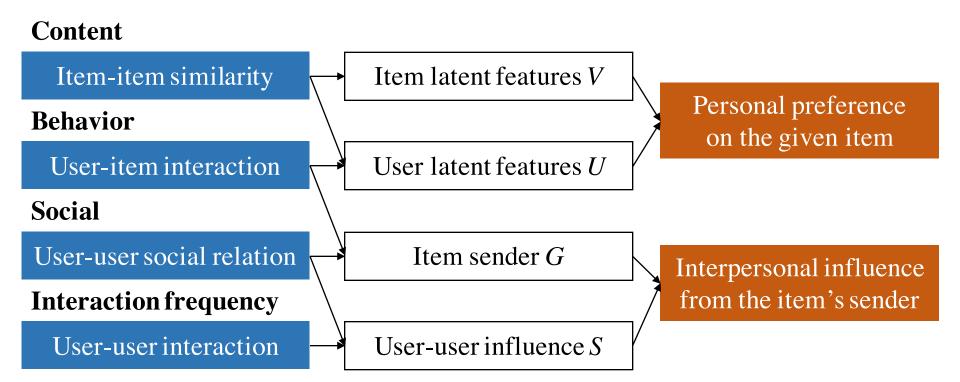
CS ILLINOIS

Observation: Social Contextual Factors

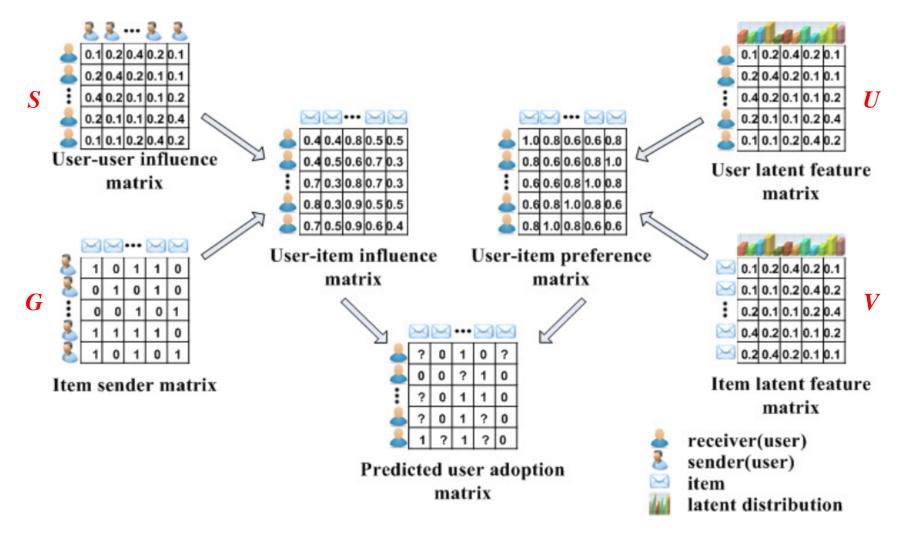


CS ILLINOIS

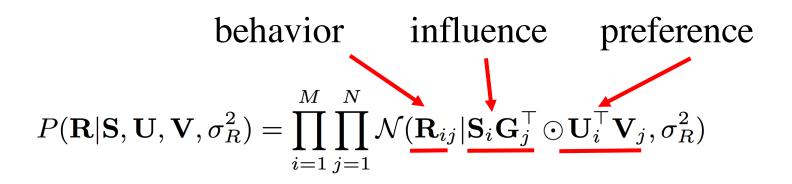
Representation: From Contextual Information to Contextual Factors



Model: ContextMF



Model: ContextMF



behavior interaction frequency/trust item content $\mathcal{J} = ||\mathbf{R} - \mathbf{S}\mathbf{G}^{\top} \odot \mathbf{U}^{\top}\mathbf{V}||_{F}^{2} + \alpha ||\mathbf{W} - \mathbf{U}^{\top}\mathbf{U}||_{F}^{2}$ $+\beta ||\mathbf{C} - \mathbf{V}^{\top}\mathbf{V}||_{F}^{2} + \gamma ||\mathbf{S} - \mathbf{F}||_{F}^{2}$ $+\delta ||\mathbf{S}||_{F}^{2} + \eta ||\mathbf{U}||_{F}^{2} + \lambda ||\mathbf{V}||_{F}^{2}$ social relation

I

Model: ContextMF

Gradient descent method

$$\begin{aligned} \frac{\partial \mathcal{J}}{\partial \mathbf{S}} &= 2\left(-\mathbf{R}(\mathbf{G} \odot \mathbf{V}^{\top} \mathbf{U}) + (\mathbf{S}\mathbf{G}^{\top} \odot \mathbf{U}^{\top} \mathbf{V})\mathbf{G} \right. \\ &+ \gamma(\mathbf{S} - \mathbf{F}) + \delta \mathbf{S}) \\ \frac{\partial \mathcal{J}}{\partial \mathbf{U}} &= 2\left(-\mathbf{V}\mathbf{R}^{\top} + \mathbf{V}(\mathbf{G}\mathbf{S}^{\top} \odot \mathbf{V}^{\top} \mathbf{U}) - 2\alpha \mathbf{U}\mathbf{W} \right. \\ &+ 2\alpha \mathbf{U}\mathbf{U}^{\top}\mathbf{U} + \eta \mathbf{U}\right) \\ \frac{\partial \mathcal{J}}{\partial \mathbf{V}} &= 2\left(-\mathbf{U}\mathbf{R} + \mathbf{U}(\mathbf{S}\mathbf{G}^{\top} \odot \mathbf{U}^{\top} \mathbf{V}) - 2\beta \mathbf{V}\mathbf{C} \right. \\ &+ 2\beta \mathbf{V}\mathbf{V}^{\top}\mathbf{V} + \lambda \mathbf{V}\right) \end{aligned}$$

Experimental Results

Method	MAE	RMSE	$\hat{ au}$	$\hat{ ho}$	
Renren Dataset					
Content-based [1]	0.3842	0.4769	0.5409	0.5404	
Item CF [25]	0.3601	0.4513	0.5896	0.5988	
FeedbackTrust [22]	0.3764	0.4684	0.5433	0.5469	
Influence-based [9]	0.3859	0.4686	0.5394	0.5446	
SoRec [19]	0.3276	0.4127	0.6168	0.6204	
SoReg [20]	0.2985	0.3537	0.7086	0.7140	
Influence MF	0.3102	0.3771	0.6861	0.7006	
Preference MF	0.3032	0.3762	0.6937	0.7036	
Context MF	0.2416	0.3086	0.7782	0.7896	
Tencent Weibo Dataset					
Content-based [1]	0.2576	0.3643	0.7728	0.7777	
Item CF [25]	0.2375	0.3372	0.7867	0.8049	
FeedbackTrust [22]	0.2830	0.3887	0.7094	0.7115	
Influence-based [9]	0.2651	0.3813	0.7163	0.7275	
SoRec [19]	0.2256	0.3325	0.7973	0.8064	
SoReg [20]	0.1997	0.2962	0.8390	0.8423	
Influence MF	0.2183	0.3206	0.8179	0.8258	
Preference MF	0.2111	0.3088	0.8384	0.8453	
Context MF	0.1514	0.2348	0.8570	0.8685	

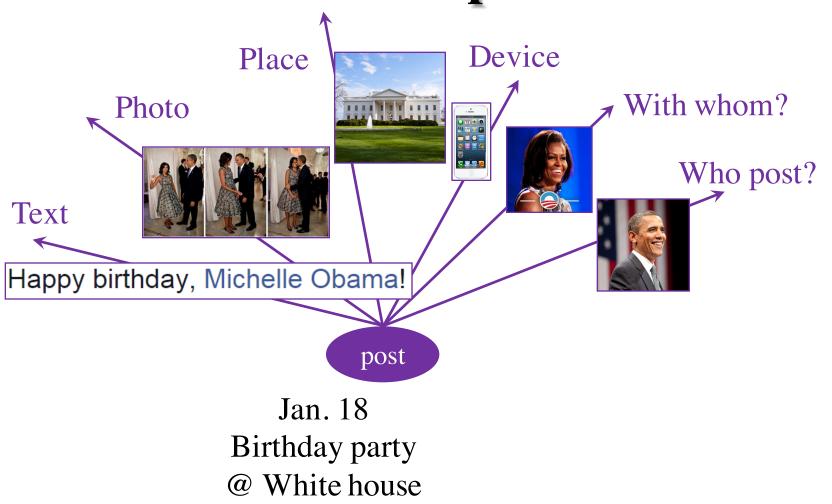
vs. SoReg [TIST'11]	Renren	Tencent Weibo
MAE	↓19.1%	↓24.2%
RMSE	↓12.8%	↓20.7%
Kendall's	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1%
Spearman's	↑10.6%	↑3.1%

Deployed in Weibo News Feed. Improved conversion rate from 5.78% to 8.27% (relatively 43%).

 \Box #citations = 149

CS ILLINOIS

Observation: Spatial Context



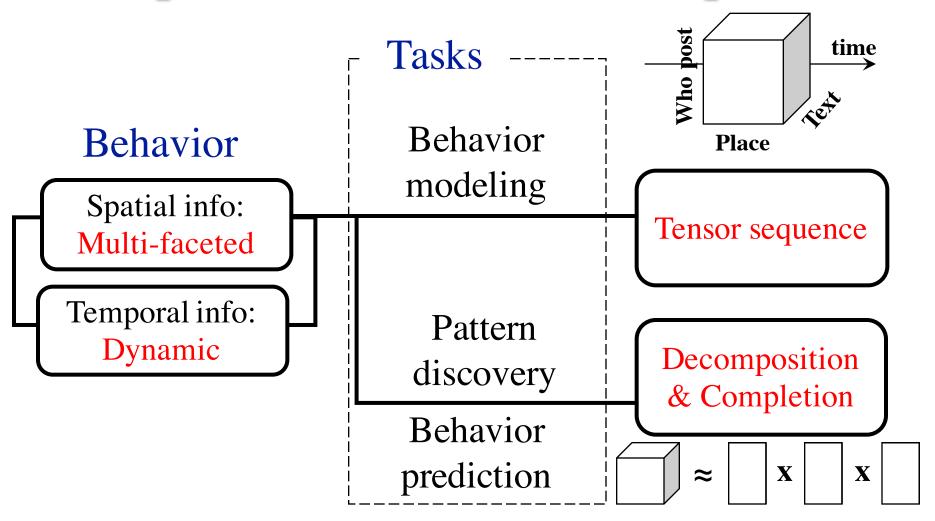
Jiang et al. Flexible Evolutionary Multi-faceted Analysis for Dynamic Behavioral Pattern Discovery. *KDD*, 2014. 34

CS ILLINOIS

Observation: Temporal Context

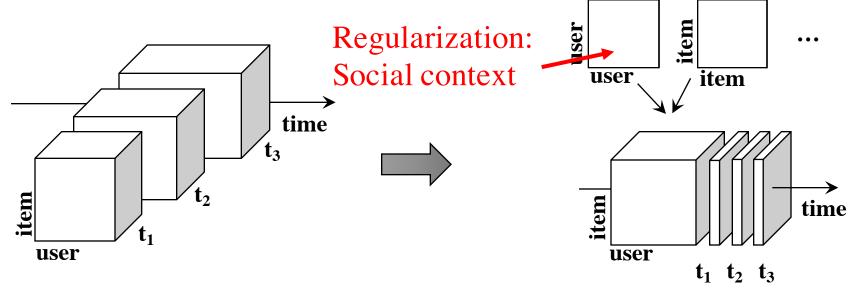
Barack Obama

Representation: Tensor Sequence

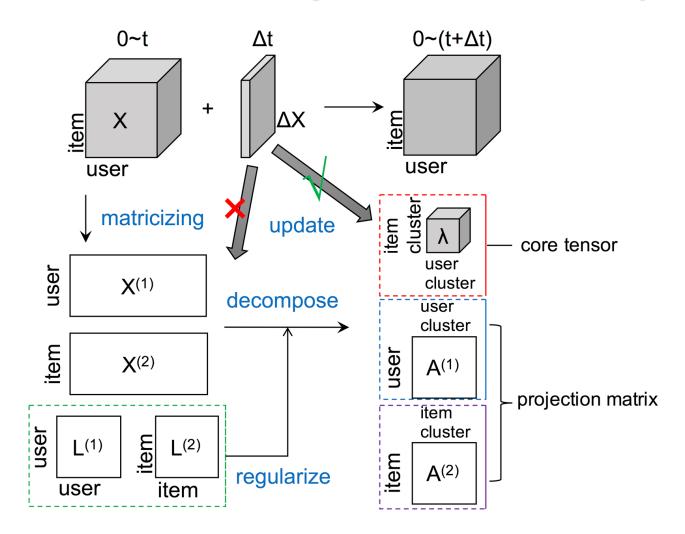


Challenges: Sparsity and Complexity

- Addressing sparsity: *Flexible regularization with auxiliary data*
- Addressing high complexity: Incremental updates for projection matrix

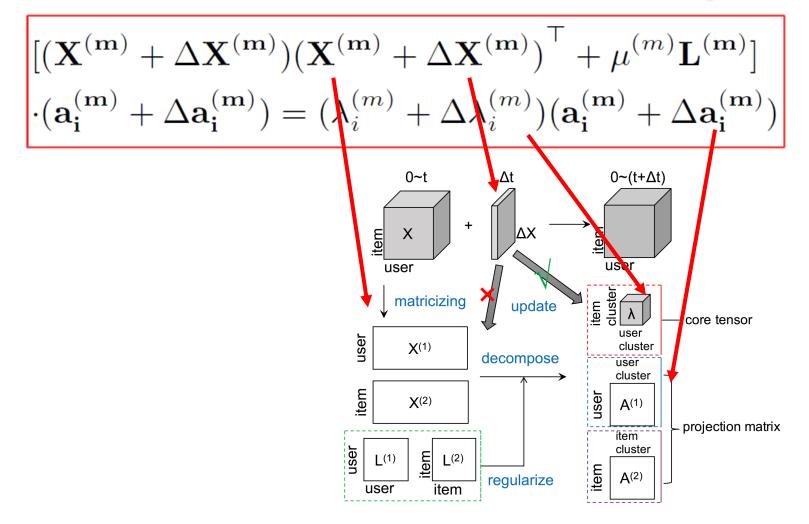


Model: FEMA Flexible Evolutionary Multi-faceted Analysis



DATA MINING GROUP

CS ILLINOIS



Algorithm: FEMA

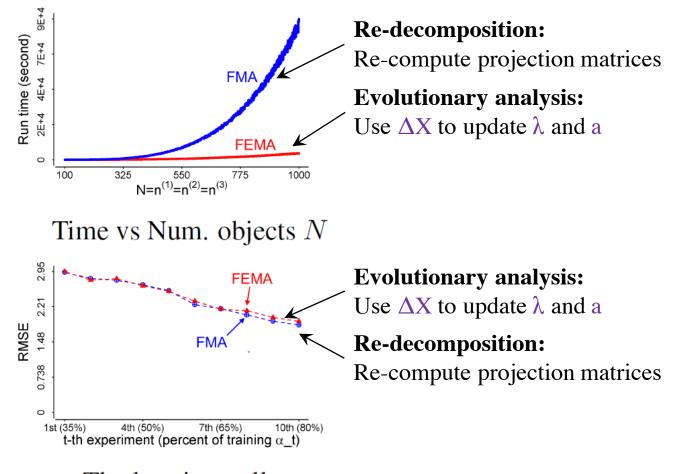
Approximation

Bound Guarantee

Require: $\mathcal{X}_{t}, \Delta \mathcal{X}_{t}, \mathbf{A}_{t}^{(\mathbf{m})}|_{m=1}^{M}, \lambda_{t}^{(\mathbf{m})}|_{m=1}^{M}$ core tensor for m = 1, ..., M do for $i = 1, ..., r^{(m)}$ do Compute $\Delta \lambda_{t,i}^{(m)}$ using $|\Delta \lambda_i^{(m)}| \le 2(\lambda_{\mathbf{x}(\mathbf{m})}^{\max} \top_{\mathbf{x}(\mathbf{m})})^{\frac{1}{2}} \|\Delta \mathbf{X}^{(\mathbf{m})}\|_2$ $\Delta \lambda_i^{(m)} = \mathbf{a}_i^{(m)\top} (\mathbf{X}^{(m)} \Delta \mathbf{X}^{(m)\top} + \Delta \mathbf{X}^{(m)} \mathbf{X}^{(m)\top}) \mathbf{a}_i^{(m)}$ and compute $\lambda_{t+1,i}^{(m)} = \lambda_{t,i}^{(m)} + \Delta \lambda_{t,i}^{(m)};$ Compute $\Delta \mathbf{a}_{\mathbf{t},\mathbf{i}}^{(\mathbf{m})}$ using $|\Delta \mathbf{a}_{\mathbf{i}}^{(\mathbf{m})}| \leq 2 \|\Delta \mathbf{X}^{(\mathbf{m})}\|_{2} \sum_{i \neq i} \frac{(\lambda_{\mathbf{X}^{(\mathbf{m})}}^{\max} \mathbf{X}^{(\mathbf{m})})^{\frac{1}{2}}}{|\lambda_{i}^{(m)} - \lambda_{i}^{(m)}|}$ $\Delta \mathbf{a}_{i}^{(m)} = \sum_{i \neq i} \frac{\mathbf{a}_{j}^{(m)^{\top}} (\mathbf{X}^{(m)} \Delta \mathbf{X}^{(m)^{\top}} + \Delta \mathbf{X}^{(m)} \mathbf{X}^{(m)^{\top}}) \mathbf{a}_{i}^{(m)}}{\lambda_{i}^{(m)} - \lambda_{i}^{(m)}} \mathbf{a}_{j}^{(m)}$ and compute $\mathbf{a}_{t+1,i}^{(m)} = \mathbf{a}_{t,i}^{(m)} + \Delta \mathbf{a}_{t,i}^{(m)} \text{ and } \mathbf{A}_{t+1}^{(m)} = \{\mathbf{a}_{t+1,i}^{(m)}\};$ projection matrix end for end for $\mathcal{Y}_{\mathbf{t+1}} = (\mathcal{X}_{\mathbf{t}} + \Delta \mathcal{X}_{\mathbf{t}}) \prod_{m=1}^{M} \times_{(m)} \mathbf{A}_{\mathbf{t+1}}^{(\mathbf{m})\mathbf{T}};$ return $\mathbf{A}_{t+1}^{(m)}|_{m=1}^{M}, \lambda_{t+1}^{(m)}|_{m=1}^{M}, \mathcal{Y}_{t+1}$

Results: FEMA > EMA > EA

	Microsoft Aca	demic Search	Tencent Weibo	mentions "@"
	MAE	RMSE	MAE	RMSE
FEMA X L	0.735	0.944	0.894	1.312
EMA X	0.794	1.130	0.932	1.556
EA X	0.979	1.364	1.120	1.873
Precision vs Recall	Precision Precis	0.6 0.8 1 Recall	Lecision BC BC BC BC BC BC BC BC BC BC	0.6 0.8 1 Recall



The loss is small.

Observation: Multiple Domains

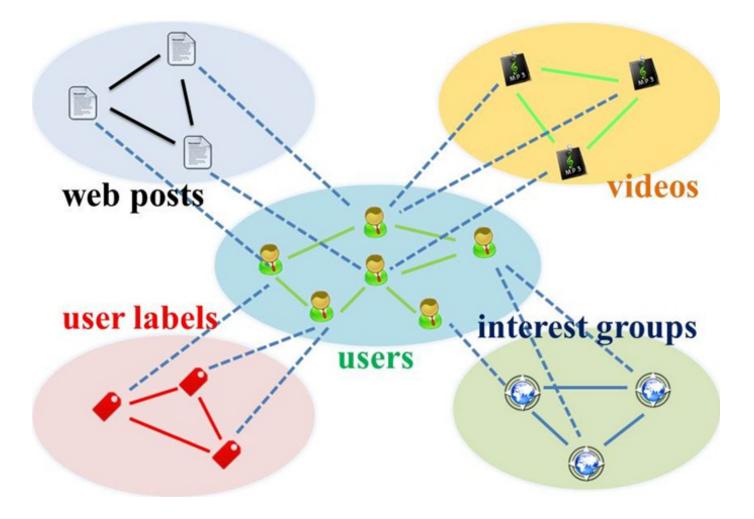
Religious Views	Christian
Interests	Basketball, writing, spending time w/ kids
Favorite Music	Miles Davis, John Coltrane, Bob Dylan, Stevie Wonder, Johann Sebastian Bach (cello suites), and The Fugees
Favorite Movies	Casablanca, Godfather I & II, Lawrence of Arabia and One Flew Over the Cuckoo's Nest
Favorite TV Shows	Sportscenter
Favorite Quotations	"The Arc of the moral universe is long, but it bends towards justice." (MLK)

Jiang et al. Social Recommendation across Multiple Relational Domains. CIKM, 2012. Social Recommendation with Cross-Domain Transferable Knowledge. TKDE, 2015. 43

...

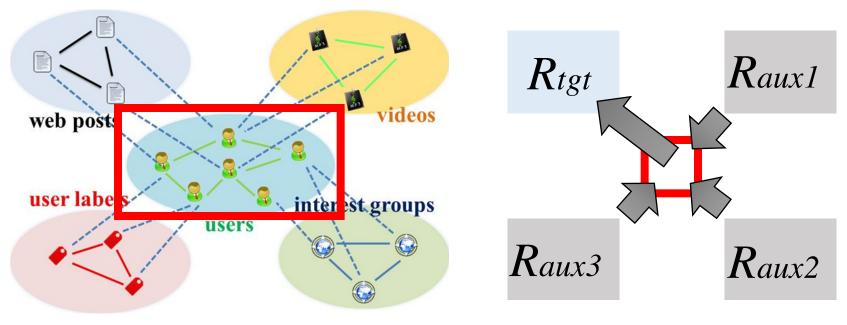
Q

Representation: Star-Structured Graph



I

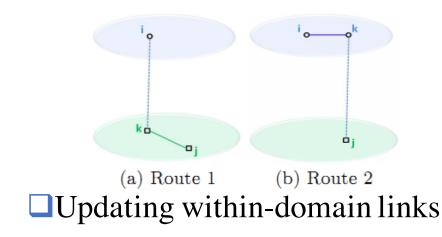
Representation: Social Bridge



Bridge: Tie strength

Algorithm: Hybrid Random Walk

Updating cross-domain links



$$p_{ij}^{(\mathcal{UP})^{+}} = \delta \sum_{u_{k}\in\mathcal{U}} r_{ik}^{(\mathcal{U})} p_{kj}^{(\mathcal{UP})^{+}} + (1-\delta) \sum_{p_{k}\in\mathcal{P}} p_{ik}^{(\mathcal{UP})^{+}} r_{kj}^{(\mathcal{P})}$$

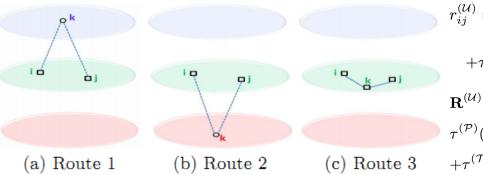
$$p_{ij}^{(\mathcal{UP})^{-}} = \delta \sum_{u_{k}\in\mathcal{U}} r_{ik}^{(\mathcal{U})} p_{kj}^{(\mathcal{UP})^{-}} + (1-\delta) \sum_{p_{k}\in\mathcal{P}} p_{ik}^{(\mathcal{UP})^{-}} r_{kj}^{(\mathcal{P})}$$

$$p_{ij}^{(\mathcal{UT})^{+}} = \eta \sum_{u_{k}\in\mathcal{U}} r_{ik}^{(\mathcal{U})} p_{kj}^{(\mathcal{UT})^{+}} + (1-\eta) \sum_{t_{k}\in\mathcal{T}} p_{ik}^{(\mathcal{UT})^{+}} r_{kj}^{(\mathcal{T})}$$

$$\mathbf{P}^{(\mathcal{UP})^{+}}(t+1) = \delta \mathbf{R}^{(\mathcal{U})}(t) \mathbf{P}^{(\mathcal{UP})^{+}}(t) + (1-\delta) \mathbf{P}^{(\mathcal{UP})^{+}}(t) \mathbf{R}^{(\mathcal{P})}$$

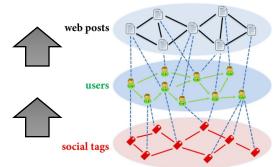
$$\mathbf{P}^{(\mathcal{UP})^{-}}(t+1) = \delta \mathbf{R}^{(\mathcal{U})}(t) \mathbf{P}^{(\mathcal{UT})^{-}}(t) + (1-\delta) \mathbf{P}^{(\mathcal{UP})^{-}}(t) \mathbf{R}^{(\mathcal{P})}$$

$$\mathbf{P}^{(\mathcal{UT})^{+}}(t+1) = \eta \mathbf{R}^{(\mathcal{U})}(t) \mathbf{P}^{(\mathcal{UT})^{+}}(t) + (1-\eta) \mathbf{P}^{(\mathcal{UT})^{+}}(t) \mathbf{R}^{(\mathcal{T})}$$



$$r_{ij}^{(\mathcal{U})} = \tau^{(\mathcal{P})} \left(\mu \sum_{p_k \in \mathcal{P}} p_{ik}^{(\mathcal{U}\mathcal{P})^+} p_{jk}^{(\mathcal{U}\mathcal{P})^+} + (1-\mu) \sum_{p_k \in \mathcal{P}} p_{ik}^{(\mathcal{U}\mathcal{P})^-} p_{jk}^{(\mathcal{U}\mathcal{P})^-} \right) + \tau^{(\mathcal{T})} \sum_{t_k \in \mathcal{T}} p_{ik}^{(\mathcal{U}\mathcal{T})^+} p_{jk}^{(\mathcal{U}\mathcal{T})^+} + \tau^{(\mathcal{U})} \sum_{u_k \in \mathcal{U}} r_{ik}^{(\mathcal{U})} r_{kj}^{(\mathcal{U})}$$
(12)
$$\mathbf{R}^{(\mathcal{U})}(t+1) = \tau^{(\mathcal{P})} \left(\mu \mathbf{P}^{(\mathcal{U}\mathcal{P})^+}(t) \mathbf{P}^{(\mathcal{U}\mathcal{P})^+}(t)^T + (1-\mu) \mathbf{P}^{(\mathcal{U}\mathcal{P})^-}(t) \mathbf{P}^{(\mathcal{U}\mathcal{P})^-}(t)^T \right) + \tau^{(\mathcal{T})} \mathbf{P}^{(\mathcal{U}\mathcal{T})^+}(t) \mathbf{P}^{(\mathcal{U}\mathcal{T})^+}(t)^T + \tau^{(\mathcal{U})} \mathbf{R}^{(\mathcal{U})}(t) \mathbf{R}^{(\mathcal{U})}(t)^T$$
(13)

I



Comparing with Random Walk with Restarts Models

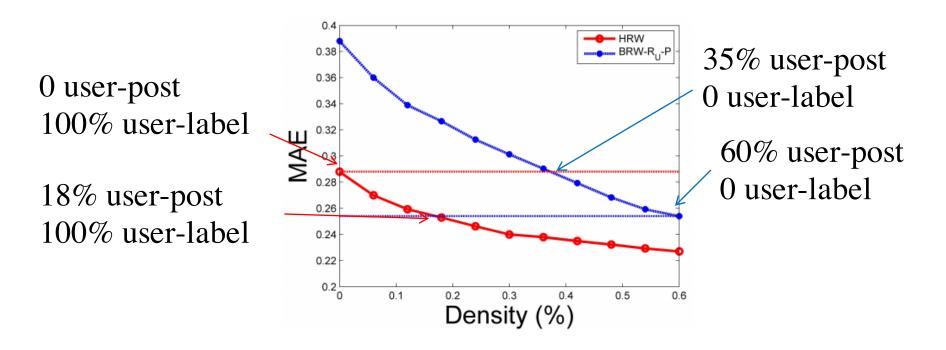
MAE	Precision	Recall	<u>F1</u>	Kendall's $\hat{\tau}$
$0.227 \pm 1.5 \text{e-}3$	$0.711 \pm 1.3e$ -3	0.921±1.4e-3	$0.802{\pm}1.1e{-}3$	$0.792 \pm 2.5 \text{e-}3$
0.276±1.1e-3	0.657±7.6e-4	$0.935 \pm 9.8 \text{e-}4$	0.772±7.6e-4	$0.774 \pm 1.6e-3$
$0.282 \pm 5.3e-3$	$0.655 \pm 4.0 \text{e-}3$	$0.921 \pm 1.2e-2$	$0.765 \pm 7.7e-3$	$0.725 \pm 2.8e-3$
$0.292 \pm 1.1e-3$	$0.666 \pm 7.0e-4$	$0.900 \pm 5.2 \text{e-}4$	$0.765 \pm 6.6e-4$	$0.725 \pm 8.5e-4$
$0.318 \pm 1.4e-3$	$0.671 \pm 1.5e-3$	$0.713 \pm 2.4 \text{e-}3$	$0.691 \pm 1.2e-3$	$0.661 \pm 2.2e-3$
$0.438 \pm 2.6e-4$	$0.571 \pm 3.4 \text{e-}4$	$0.499 \pm 4.2e-4$	$0.532 \pm 3.2e-4$	$0.606 \pm 2.3e-4$
	$\begin{array}{c} \textbf{0.227 \pm 1.5e-3} \\ 0.276 \pm 1.1e-3 \\ 0.282 \pm 5.3e-3 \\ 0.292 \pm 1.1e-3 \\ 0.318 \pm 1.4e-3 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Comparing with Social Recommendation Baselines

Algorithm	MAE	Precision	Recall	F1	Kendall's $\hat{\tau}$
HRW	$0.227 \pm 1.5 \text{e-}3$	$0.711 \pm 1.3e$ -3	$0.921 \pm 1.4 \text{e-}3$	$0.802{\pm}1.1e{-}3$	$0.792 \pm 2.5 \text{e-}3$
BRW- R_U -P (TrustWalker) [10]	$0.276 \pm 1.1e-3$	0.657±7.6e-4	$0.935 \pm 9.8 \text{e-}4$	$0.772 \pm 7.6e-4$	$0.774 \pm 1.6e-3$
BRW- W_U (ItemRank) [8]	0.318±1.4e-3	0.671±1.5e-3	$0.713 \pm 2.4 \text{e-}3$	0.691±1.2e-3	$0.661 \pm 2.2e-3$
MCF [5]	$0.352 \pm 2.3e-4$	$0.592 \pm 1.8e-3$	$0.951 \pm 6.0e-4$	0.730±1.3e-3	$0.582 \pm 4.3e-4$
CF [22]	$0.506 \pm 3.4 \text{e-}4$	$0.552 \pm 1.5e-3$	$0.589 \pm 7.2 \text{e-}4$	$0.570 \pm 1.0e-3$	$0.540 \pm 5.2e-4$

Results: Insight

Knowledge transfer from auxiliary domains improves cold-start users' behavior prediction
 Using aux. (label) data, saving 60-70% tgt. (post) data



CS ILLINOIS

Observation: Multiple Platforms

Jiang et al. Little is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds. AAAI, 2016. 49

Observation: Cross-Platform

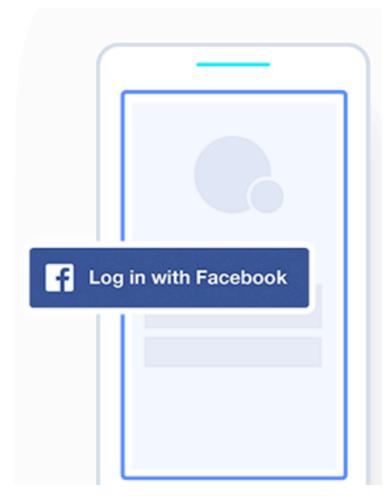
Add Facebook Login to Your App or Website

Facebook Login for Apps is a secure, fast and convenient way for people to log into your app or website.

Android

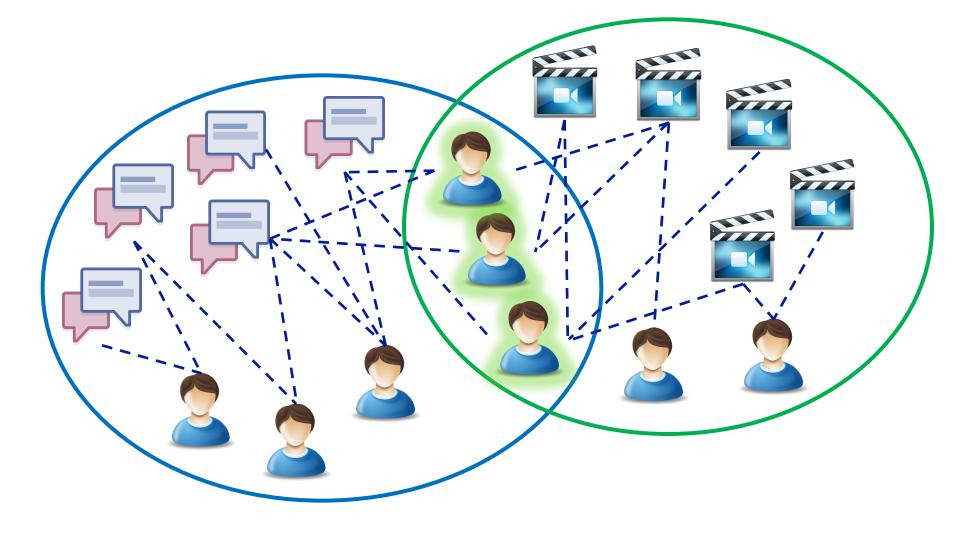
Websites or mobile websites

More platforms

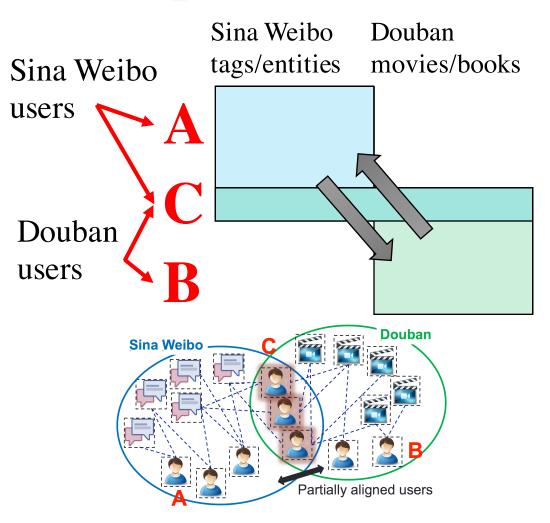


I

Observation: Partially Overlapped Crowds

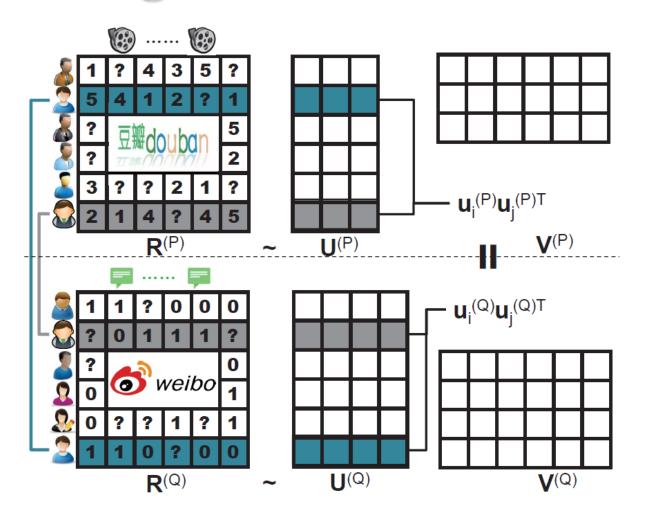


Representation: When NO Transfer



User set	Weibo tweet entity to Douban movie	
	RMSE	MAP
А	Auxiliary pl	atform data!
С	0.779	0.805
В	1.439	0.640

User set		Douban book to Weibo social tag	
	RMSE	MAP	
А	0.429	0.464	
С	0.267	0.666	
В	Auxiliary p	olatform data!	



53

Algorithm: XPTrans

Input

□Tgt./Aux. platform P/Q;

 $\Box Behavior data R(P)/R(Q); Target platform$

 $\Box Observation W(P)/W(Q);$

Overlapping indicator W(P,Q),

Output

- User latent representation U(P)/U(Q);
- □Item latent representation V(P)/V(Q);

□ Missing values in R(P)

 $\mathcal{J} = \sum_{i,j} W_{i,j}^{(P)} \left(R_{i,j}^{(P)} - \sum_{r} U_{i,r}^{(P)} V_{r,j}^{(P)} \right)^{2} + \lambda \sum_{i,j} W_{i,j}^{(Q)} \left(R_{i,j}^{(Q)} - \sum_{r} U_{i,r}^{(Q)} V_{r,j}^{(Q)} \right)^{2} + \mu \sum_{i_{1},j_{1},i_{2},j_{2}} W_{i_{1},j_{1}}^{(P,Q)} W_{i_{2},j_{2}}^{(P,Q)} \left(A_{i_{1},i_{2}}^{(P)} - A_{j_{1},j_{2}}^{(Q)} \right)^{2}$

Objective function

Overlapping user similarity (Pair-wise regularization)

Results: Leveraging Auxiliary Platform Data

NO Transfer

User set	Weibo tweet o Douban movi	.
	RMSE	MAP
А	Auxiliary plat	form data!
С	0.779	0.805
В	1.439	0.640
User set	Douban book Weibo social	
	Weibo social	tag
set	Weibo social RMSE	tag MAP

Transfer via the Same Latent Space

User set	Weibo tweet er Douban movie	
	RMSE	MAP
А		
С	0.757	0.811
В	1.164 (-19%)	0.702 (+9.7%)
)		
User set	Douban book t Weibo social ta	
	Weibo social ta RMSE	ng
set	Weibo social ta RMSE	ng MAP

Results: Leveraging Different Latent Spaces

Transfer via the Same Latent Space

User set	Weibo tweet entity to Douban movie RMSE MAP	
	RMSE	MAP
А		
С	0.757	0.811
В	1.164	0.702
	Douban book to	
User set	Douban book t Weibo social ta	
	Weibo social ta	ıg
set	Weibo social ta RMSE	ng MAP

Transfer via Different Latent Spaces

User set	Weibo tweet entity to Douban movie RMSE MAP	
	RMSE	MAP
А		
С	0.715	0.821
В	0.722 (-38%)	0.820 (+17%)
User set	Douban book Weibo social ta	
	Weibo social ta	ng MAP
set	Weibo social ta RMSE	ng MAP

Results: Where Amazing Happens

NO Transfer

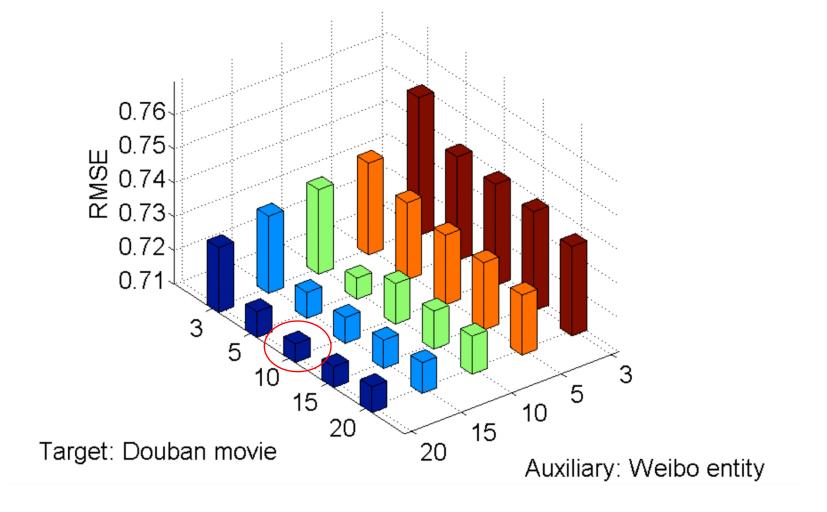
User set	Weibo tweet Douban mov	U
	RMSE	MAP
А	Auxiliary plat	form data!
С	0.779	0.805
В	1.439	0.640
User set	Douban book Weibo social	
	Weibo social	tag
set	Weibo social RMSE	tag MAP

Transfer via Different Latent Spaces

User set	Weibo twe Douban me	V	
	RMSE	MAP	
А			
С	0.715	0.821	_
В	0.722	0.820	
		Douban book to	
User set	Douban bo Weibo soci		
	Weibo soci	al tag	
set	Weibo soci RMSE	al tag MAP	

I

Results: Different Sizes of Latent Spaces



Summary

- Like, Reply, Share, Retweet, Favorite, Comment ...
- Memory based social recommenders
 - □TidalTrust, MoleTrust, TrustWalker
- Model based social recommenders
 - □SoRec, "Social Trust" Ensemble, SoReg
- **Observations, Representations, Models**
 - ContextMF: Social contexts (preference & influence)
 FEMA: Spatiotemporal contexts (multidimensional)
 HybridRW: Cross-domain behavior modeling
 XPTrans: Cross-platform behavior modeling

Acknowledgement

References

D. Blei, A. Ng, and M. Jordan. "Latent dirichlet allocation." JMLR, 2003.

J. Herlocker, J. Konstan, L. Terveen, J. Riedl. "Evaluating collaborative filtering recommender systems." ACM TOIS, 2004.

Y. Koren, R. Bell, C. Volinsky. "Matrix factorization techniques for recommender systems." Computer, 2009.

Y. Koren. "Factorization meets the neighborhood: A multifaceted collaborative filtering model." KDD, 2008.

Y. Koren. "Collaborative filtering with temporal dynamics." CACM, 2010.

M. Balabanovic and Y. Shoham. "FAB: Content-based, collaborative recommendation." CACM, 1997.

N. Liu and Q. Yang. "Eigenrank: A ranking-oriented approach to collaborative filtering." SIGIR, 2008.

N. Liu, M. Zhao, and Q. Yang. "Probabilistic latent preference analysis for collaborative filtering." CIKM, 2009.

References

H. Ma, H. Yang, M. Lyu, and I. King. "Sorec: Social recommendation using probabilistic matrix factorization." CIKM, 2008.

H. Ma, T. Zhou, M. Lyu, and I. King. "Improving recommender systems by incorporating social contextual information." ACM TOIS, 2011.

H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King. "Recommender systems with social regularization." WSDM, 2011.

J. Leskovec, A. Singh, and J. Kleinberg. "Patterns of influence in a recommendation network." PAKDD, 2006.

P. Massa and A. Paolo. "Trust-aware recommender systems." RecSys, 2007.

M. Jamali and E. Martin. "TrustWalker: A random walk model for combining trust-based and item-based recommendation." KDD, 2009.

H. Ma, I. King, and M. Lyu. "Learning to recommend with social trust ensemble." SIGIR, 2009.

H. Ma. I. King, and M. Lyu. "Learning to recommend with explicit and implicit social relations." ACM TIST, 2011.

I

References

M. Faloutsos, P. Faloutsos, and C. Faloutsos. "On power-law relationships of the internet topology." SIGCOMM, 1999.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Weiner. "Graph structure in the web." Computer Networks, 2000.

F. Chung and L. Lu. "The average distances in random graphs with given expected degrees." PNAS, 2002.

J. Kleinberg. "Authoritative sources in a hyperlinked environment." JACM, 1999.

H. Kwak, C. Lee, H. Park, and S. Moon. "What is Twitter, a social network or a news media?" WWW, 2010.

B. Hooi, H.A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos. "Fraudar: Bounding graph fraud in the face of camouflage." KDD, 2016.

C. Aggarwal and J. Han. "Frequent pattern mining." Springer, 2014.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. "FreeSpan: Frequent pattern-projected sequential pattern mining." KDD, 2000.

Ĩ

References

X. Yan and J. Han. "gspan: Graph-based substructure pattern mining." ICDM, 2003.

X. Yan and J. Han. "CloseGraph: Mining closed frequent graph patterns." KDD, 2003.

Y. Sun, J. Han, X. Yan, P.S. Yu, and T. Wu. "PathSim: Meta path-based top-k similarity search in heterogeneous information networks." VLDB, 2011.

Y. Sun, Y. Yu, and J. Han. "Ranking-based clustering of heterogeneous information networks with star network schema." KDD, 2009.

Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. "RankClus: Integrating clustering with ranking for heterogeneous information network analysis." EDBT, 2009.

Y. Sun, R. Barber, M. Gupta, C. Aggarwar, and J. Han. "Co-author relationship prediction in heterogeneous bibliographic networks." ASONAM, 2011.

A. El-Kishky, Y. Song, C. Wang, C.R. Voss, and J. Han. "Scalable topical phrase mining from text corpora." VLDB, 2014.

J. Liu, J. Shang, C. Wang, X. Ren, and J. Han. "Mining quality phrases from massive text corpora." SIGMOD, 2015.

References

X. Ren, A. El-Kishky, C. Wang, F. Tao, C.R. Voss, and J. Han. "Effective entity recognition and typing by relation phrase-based clustering." KDD, 2015.

X. Ren, W. He, M. Qu, C.R. Voss, H. Ji, and J. Han. "Label noise reduction in entity typing by heterogeneous partial-label embedding." KDD, 2016.

C. Wang, M. Danilevsky, N. Desai, Y. Zhang, P. Nguyen, T. Taula, and J. Han. "A phrase mining framework for recursive construction of a topical hierarchy." KDD, 2013.

E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos. "ParCube: Sparse parallelizable tensor decompositions." PKDD, 2012.

D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. "VOG: Summarizing and understanding large graphs." SDM, 2014.

R. Gupta, A. Halevy, X. Wang, S.E. Whang, and F. Wu. "Biperpedia: An ontology for search applications." VLDB, 2014.

M. Yahya, S. Whang, R. Gupta, and A. Halevy. "ReNoun: Fact extraction for nominal attributes." EMNLP, 2014.

A. Halevy, N. Noy, S. Sarawagi, S.E. Whang, and X. Yu. "Discovering structure in the universe of attribute names." WWW, 2016.

Ĩ

References

Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. "Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation." SIGMOD, 2014.

Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and J. Han. "A confidence-aware approach for truth discovery on long-tail data." VLDB, 2014.

F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and J. Han. "Faitcrowd: Fine grained truth discovery for crowdsourced data aggregation." KDD, 2015.

Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han. "A survey on truth discovery." KDD Explorations Newsletter, 2016.

S. Zhi, B. Zhao, W. Tong, J. Gao, D. Yu, H. Ji, and J. Han. "Modeling truth existence in truth discovery." KDD, 2015.

S. Kumar, R. West, and J. Leskovec. "Disinformation on the Web: Impact, characteristics, and detection of Wikipedia hoaxes." WWW, 2016.

S. Kumar, F. Spezzano, and V.S. Subrahmanian. "Identifying malicious actors on social media." ASONAM, 2016. (tutorial)

Thank you!

Data-Driven Behavioral Analytics: Observations, Representations and Models