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Abstract
Deep neural networks (DNNs) and other black box func-
tions (BBFs) are notoriously difficult to interpret given their
numerous layers of nonlinear functions and weights, which
calls for methods to retrospectively explain the model’s out-
put. Trust, and therefore explainability of the model’s output
is essential if used in safety-critical applications, where it is
crucial that decisions derived from the model reflect a depen-
dence on contextually meaningful features. Current explain-
ability frameworks (1) Lack a reliable quantitative definition
of explainability, (2) Aren’t evaluated on a true ground truth
measure, and (3) Fail to account for multi-way feature inter-
actions. This paper proposes the concept of feature instability
as a proxy for the importance of a given input parameter’s
features in determining the output of a BBF, where instabil-
ity refers to the distance a BBF’s input feature must change
to alter the output of the BBF. We propose DFEST, an ap-
proach to quantify the influence of multi-way feature interac-
tions in the output of a low dimensional BBF model. These
proposed methods define a completely synthetic ground truth
explainability, which have not been previously conceptual-
ized, and estimate ground truth feature interaction explain-
ability at scale through informed outside-in search. Reposi-
tory: https://github.com/spkell/DFEST-Explainability

Introduction
Deep neural networks (DNNs) today outperform humans
in many tasks by learning to extract relevant information
from data. However, due to their inherent complexity of
high-dimensional mathematics, neural connections, layers,
the process in which their architectures are defined, and how
the training process converges, deep learning models are of-
ten referred to as black boxes lacking human interpretability.
As a result, they are often avoided in safety-critical systems
like health diagnosis (Fink et al. 2018; Chander et al. 2018).
Aside from model trustworthiness, non-interpretable mod-
els risk adversarial attack vectors through noise identified
in model parameters (Samuel et al. 2021a). We will refer
to arbitrary binary prediction black box functions (BBFs)
throughout this paper in place of a specific type of black box
model such as MLPs, DNNs, or other non-linear neural net-
works, although a logistic regression is demonstrated in this
paper’s evaluation section for simplicity.

In addition to generating the predictions produced by
BBFs with high fidelity, it is equally important to understand

Figure 1: Illustration of feature instability to explain the fea-
ture interactions responsible for a given input source predic-
tion. (A) Feature space of a BBF is shown that can predict
{+/-} given (f1, f2) as input. Given the decision boundary,
f1 clearly holds all the importance in determining the output
of the model, while f2 carries no weight. That is, f1 is unsta-
ble and f2 is stable w.r.t. the model and any given input (xq)
to the model. This represents a 1-way feature interaction, as
only 1 feature is relevant. (B) Given a source node to explain
the prediction ŷs (cyan star) in position xs, feature instabil-
ity I is defined as 1/Distance of xs to the closest query
nodes in position xq (magenta triangle) on the opposite side
of the model’s decision boundary. The blue and orange lines
represent the continuous spectrum of numerical values the
model input can be perturbed from xs.

the reasons behind the predictions, as 2 models can come to
the same conclusion with drastically different reasoning. To
address this, the study of Trusted AI (Polak and Krzanowski
2021; Cohen et al. 2019) examines the importance of fair-
ness, robustness, explainability, transparency, accountabil-
ity, and value alignment in AI development.

Explainable AI (XAI) XAI (Molnar 2022) provides the
means for technical trust, solvable through rationality.
Frameworks of XAI are categorized in several ways. (1)
An intrinsic method typically restricts the complexity of the
model to enable interpretability, such as the intrinsic inter-
pretability of decision trees (Freitas 2014), whereas post-hoc
methods examine mappings of input to output post train-
ing. (2) Model specific methods interpret the weights of
the model to formulate explainability, while model agnostic
methods use post-hoc analysis, with no access to model pa-
rameters. Lastly, (3) Global interpretability attempts to com-
prehend the whole model, which are nearly un-interpretable
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by humans for models with more than 4-5 parameters due
to constraints of our visual system (Lipton 2016). Local
explainability examines specific BBF input-output pairs,
which closely reflects small groups of feature contributions
that may be overlooked in a global interpretation.

Related Work
Researchers have worked on various model-interpretable
tools, which includes but are not limited to LIME (Ribeiro,
Singh, and Guestrin 2016a), DLIME (Zafar and Khan 2019),
Eli5 (Fan et al. 2019), SHAP (Lundberg and Lee 2017), LEN
(Ciravegna et al. 2021), counterfactual (Verma, Dickerson,
and Hines 2020), and influence functions (Hines et al. 2022).
LIME explains the prediction of a classifier by learning an
interpretable model locally around the prediction (Ribeiro,
Singh, and Guestrin 2016a). Furthermore, Shapley Additive
exPlanations (SHAP), are a unified approach for interpret-
ing predictions, in which they use game theoretic approach
to explain the output of a given model by assigning each fea-
ture with an importance score using shapley values (Lund-
berg and Lee 2017; Sundararajan, Dhamdhere, and Agarwal
2020; Tsai, Yeh, and Ravikumar 2022).

To make intrinsic local explanations human readable,
Logic Explained Networks (LENs) utilize first order logic in
providing rule-based explanations to the models predictions
(Ciravegna et al. 2021). Explainability at the single neuron
level has proven to be difficult even for simplistic toy models
due to the polysemnaticity of neurons, causing each to re-
spond to several unrelated features, related to the superposi-
tion hypothesis (Elhage et al. 2022). Similarly, statistical in-
teractions of DNN hidden layer weights can provide insight
on input feature interactions (Tsang, Cheng, and Liu 2017).
Random Forest Importances (Li et al. 2019) are considered
to approximate the ground truth of one-way feature explain-
ability through a permutation importance mechanism, sim-
ilarly to LIME (Ribeiro, Singh, and Guestrin 2016a) and
SHAP (Lundberg and Lee 2017). Counterfactual approaches
perturb the BBF input by iteratively removing input fea-
tures ad-hoc in search of a changed model output. Influ-
ence functions (Adler et al. 2016) approach interpretability
by adjusting training data of model to measure a change in a
model’s output, to calculate influence Iloss(xtest) of a per-
turbed training input on the model’s loss function.

Counterfactual Explainability Counterfactual XAI can
be defined by methods that “explain a model’s prediction by
assigning credit to each input feature based on how much
it influenced the prediction” (Janizek, Sturmfels, and Lee
2020), which implicitly includes feature interactions. Coun-
terfactual approaches to interpretability such as SHAP may
be closer aligned to reliability and robustness, as they scru-
tinize model performance in the face of parameter & input
variation. These methods explore the representation space of
a model after training to shed light on the model’s decision
making.

Evaluation of Interpretability Some claim that if a sys-
tem is useful in a practical application, it implies that the
system is interpretable (Lei, Barzilay, and Jaakkola 2016;
Kim, Chacha, and Shah 2013). Another direction is for a

Figure 2: Synthetic Model with Ground Truth Feature Insta-
bility Measures to Evaluate the Performance of DFEST and
LIME in Ranking Feature Importance of a Particular Out-
put (A) Ground truth multi-way feature-interaction instabil-
ity in 2 dimensional feature space, displaying the source
node position (yellow star), query node positions that give
same (cyan) and alternate (black) binary predictions from
the source node. (B) The decision boundary surrounding xs

in feature space is generated w.r.t. cMin (green). Clusters ad-
jacent to cMin are generated given a set of relative feature
importance’s, to mimic the continuous gradient of feature
stability in a real world BBF. This synthetic model easily
scales to arbitrary dimensional space.

quantifiable proxy where a class of models can be claimed
as interpretable (Doshi-Velez and Kim 2017).

Functionally grounded explanations such as the synthetic
ground truth model described in this paper give a quantifi-
able measure of interpretability based on evaluation of a
proxy, whereas human based explanations consider how the
system improves the downstream task that the system is used
to explain (Guidotti et al. 2018). Some even state that eval-
uation of explainability is “qualitative in nature” (Samuel
et al. 2021b). We posit that a system need not be application
useful to be interpretable, while it does need to be function-
ally evaluable to be interpretable. Thus, we should determine
a functional basis for interpretability to vet system perfor-
mance in human application judged uses (Guidotti 2021).

Current XAI methods lack a reliable quantitative defini-
tion of explainability, and are instead typically evaluated on
the basis of qualitative methods such as predictability, re-
liability, faithfulness, and consistency. Current XAI meth-
ods largely ignore the deep non-linear interactions of BBFs
that result in supra-additive (Berthoud 2013) feature inter-
actions, s.t. the importance of features in producing a BBFs
output I(f1) + I(f2) < I(f1, f2). Friedman’s H-Statistic
(Inglis, Parnell, and Hurley 2021) hints at the study of multi-
way feature interactions, however cannot practically scale
past 2-way interactions due to complexity constraints. This
phenomena is clearly described in Bayesian statistics with
causal knowledge (Lad 1999).

Scope We consider the following research questions:

• Can the performance of explainability frameworks be
evaluated against a quantifiable ground truth explainabil-
ity based on a local search of a model’s input and output
in representational decision space?
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• Can supra-additive feature interactions be represented
and searched for in local representation space?

• Can an informed search on the output decision space of a
BBF model generate more expressive and accurate expla-
nations than state-of-the-art explainability frameworks,
with high order feature interactions?

To address these questions, we propose a novel post-hoc
diagnostic approach, namely Feature Stability Descent and
Tensor Search for Explainability (DFEST) to quantify the
importance of multi-way feature interactions in the output
of BBFs with continuous features. DFEST introduces:
• The concept of feature (in)stability as a measure of ex-

plainability of the output of a model;
• A synthetic model with predetermined ground truth

multi-way feature explainability to evaluate explainabil-
ity frameworks;

• An informed stability descent based search algorithm as
an attempt to quantifying multi-way feature stability, or
importance, for a given recommendation;

• And a feature importance ranking evaluation loss func-
tion capable of comparing one-way feature explainability
frameworks (LIME, SHAP) to more expressive frame-
works (DFEST).

Problem Definition
In this section, we introduce the problem definition, and de-
scribe our novel approach, DFEST, in explaining the results
generated by BBFs, while leveraging multi-way feature in-
teractions. Moreover, we provide a detailed explanation of
feature instability, as we posit the concept as one of the most
promising quantifiable measures of explainability.

Problem Definition: Current methods to explain the most
important features for a BBF’s output are unable to account
for multi-way feature interactions, and lack a reliable ground
truth metric to evaluate XAI frameworks.

Feature Instability
Let ŷ = BBF (xtrain) denote a generic BBF. Let xs =
f1, . . . , fn be an n-dimensional vector, denote the input data
to a BBF, composed of n continuous numerical features fi,
from which we want to explain a specific BBF output ŷs,
s.t. we are blind to the internal BBF parameters. Feature in-
stability is defined as the minimum feature-scaled distance
△′(xs, xq) in representational decision space RX between
xs and another location xq ∈ RX s.t. ŷs ̸= ŷq (Figure 1).
Further, the dominant feature instability of f1 over f2 in Fig-
ure 1 presents a logical, quantifiable measure of f1’s impor-
tance in explaining how the model produces a prediction:

k-way Feature Instability =
1

Distance
=

1

△′(xs, xq)
. (1)

Multi-way feature interaction can thus be defined through
feature instability, where small perturbations in multiple fea-
tures f ∈ xs can result in a different ŷ, and k denotes the
number of important features involved in the feature interac-
tion. Feature instability can function as a direct quantifiable

Figure 3: Illustration of DFEST in sequence of (a) Uniform
Search and (b) Informed Cluster Search algorithm. (A) Fea-
ture combinations giving ŷs = ŷq (cyan) and alternate out-
put (black) are shown. Blue dots indicate points in uniform
vectors relative to xs that have not yet resulted in ŷs ̸= ŷq ,
while red triangles indicate xq where ŷs ̸= ŷq w.r.t. xs (gold
star). (B) Given RU from (A), Informed Cluster Search uses
distance heuristics to identify the closest feature-interaction
clusters (c) on the opposite side of the decision boundary,
leading to ŷs ̸= ŷq . Each solution discovered by Informed
Cluster Search RH is denoted by green stars, trailed by ma-
genta dots from cluster based stability descent.

metric for explainability, as the path of least perturbations
leading to a differential ŷ indicates the features upon which
the BBF most readily changes its output. In other words,
feature instability is the minimum distance to a decision
boundary for a set of input features.

Following from this definition, a continuous feature fi
in which a small change in fi and no others result in a
large δŷ, implies that fi is highly unstable for the query
ŷ = BBF(xs). On the contrary, if fi requires a much larger
magnitude of change to encounter a solution than other fea-
ture dimensions, then fi can be said to be stable w.r.t. xs and
the respective BBF.

Feature Instability Discussion Feature instability is
closely related to faithfulness & permutation importance
(Zhou et al. 2021), as well as sensitivity and infidelity in
relation to saliency expectations, which seeks to minimize
explanation infidelity by measuring the difference in func-
tion values after significant perturbations on the input (Yeh
et al. 2019). Within these methods are LIME, C-LIME, Ker-
nelSHAP, Occlusion, Vanilla Gradients, Gradients x Input,
SmoothGrad, and Integrated Gradients, which all perform
local linear function approximation of a black box model,
differing in loss function and neighborhood (Han, Srinivas,
and Lakkaraju 2022). There is no consensus definition of
feature attribution whereas the feature instability measure
clearly & intuitively defines explainability. Work by (Bast-
ings et al. 2021) proposes feature permutation importance
evaluation functions separately for precision and mean rank,
however these functions ignore multi-way feature interac-
tions, which are both represented in DFEST. Overall, fea-
ture instability provides a principled definition of multi-way
feature explainability that can be utilized as a foundational
objective to create new explainability methods, as an alter-
native to the concept of location function approximation.
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Feature Space
Explaining the most important feature interactions respon-
sible for the output of ŷ through the discovery of multi-
way feature instability is formalized as a local optimiza-
tion search through n-dimensional feature space surround-
ing xs. The BBF input (fi ∈ f ), can be conceptualized
as a single coordinate in a tensor consisting of every pos-
sible input the model can take. In this, each dimension of
the tensor corresponds to the range of 3 standard deviations
(σ3(fi)− σ−3(fi)) of possible values of an input feature of
the model, defined as domain D, while the position has a
value corresponding to ŷ. A high dimensional feature space
tensor has complexity O(nx)∀x ∈ fi, where x is the number
of unique values each feature fi could exhibit, and n is the
number of distinct features input to the model.

In this paper, space is structured as a graph, where the
source node represents xs, while query nodes (xq) are gen-
erated to provide the BBF with feature combinations that
approach a decision boundary. Each node contains input fea-
tures corresponding to its position in feature space (xq), and
a feature-dependent scaled euclidean distance △′(xs, xq)
from the given query node to the source node. Solutions are
nodes with positions near the source node in feature space
which led to a change in the BBF output.

Method
DFEST is a novel model agnostic XAI method that leverages
local informed search to measure post-hoc multi-way fea-
ture instability of local BBF predictions. It introduces (1) the
concept of feature stability as a measure of explainability of
the model output and (2) an informed stability descent based
search algorithm capable of quantifying multi-way feature
stability of a given binary prediction (see Figure 1).

Algorithm 1: N-Dimensional Uniform Search Algorithm
1: D = σ3(fi) - σ−3(fi) ∀i ∈ d and ∀fi ∈ training set.
2: µ = d

nSteps ∀d ∈ D
3: F = 1

d ∀d ∈ D
4: featSteps = (µf0 , . . . , µfd)
5: ŷ = BBF(xs)
6: for 0 → k do
7: xu = Normalize(Rand(0,1) ∀i ∈ n)
8: for step ∈ nSteps do
9: xq = (xu × featSteps[step]) + xs

10: ŷ′ = BBF(xq)
11: if ŷ ̸= ŷ′ then
12: xq .distance = △′(xs, xq)
13: RU .insert(xq)
14: end if
15: end for
16: end for
17: return RU

This method is closely related counterfactuals, attribution,
and influence functions, as they attempt to measure post-hoc
explainability through perturbations in feature space. How-
ever, these methods lack a reliable quantified definition such
as feature instability, or a method to identify multi-way fea-
ture interactions.

Solution Definition DFEST functions to identify the or-
dered set of the k most unstable feature-interaction clusters,
denoted as {c0, . . . , ck} ∈ C ∀i < k s.t. ci ⊆ Sign(xs−xq),
where Sign() denotes a step function s.t. Sign(x < 0) =
−1, Sign(x > 0) = 1, and Sign(x = 0) = 0, re-
turning a vector of length |xs|(MATLAB 2022). The or-
dering of elements in C is given by the cluster instability
I(cj) > I(cj+1)∀j < ||P(xs)||, the number of elements
in the power set of feature-interactions in xs. Furthermore:
(a) Given xs and ŷs, xs is iteratively perturbed by small
amounts into xq , until ŷs ̸= ŷq , making xq an instability so-
lution, though likely sub-optimal, and a continuous valued
member of an instability cluster ci, where ci is the hypothet-
ical complete set of all counterfactual points xq diverging
from xs into cluster i. (b) Instability(ci|xs, xq) =

1
△′(xs,xq)

,
where (xs − xq) = min(xs − xq)∀xq ∈ ci; (c) Different
features fi ∈ xs exist on different value scales, and thus
must scaled by their expected input range, to ensure a per-
turbation in fi is equivalent in terms of feature instability
to a similar degree of perturbation of fj . △′(xs, xq) is de-
fined as the euclidean distance between the features in xs

and xq , s.t. xsi − xqi =
1

D(fi)
∗ (fi ∈ xs − fi ∈ xq), where

D(fi) = σ3(fi) − σ−3(fi)∀fi ∈ x ∈ Xtrain. Although
xtrain is noted as a feature in the DFEST workflow, training
data is only needed to obtain an approximate measure of how
the domain of each individual feature differs, for the sake of
normalization. A subject matter expert should be able to ac-
curately predict this value in the absence of training data.

Feature Stability Descent and Tensor Search (DFEST)
DFEST is composed of a uniform vector search to approx-
imate an even distribution of solutions from the origin in
n-dimensional feature search space, followed by distance in-
formed search. DFEST is performed on a 2D feature space
in the illustrations included in this paper for the sake of clar-
ity (see Figure 3), with higher dimensional search results
of the synthetic ground truth model illustrated in Figures 4
and 5. The n-dimensional feature space to be searched for
the k feature interactions having the lowest stability with
respect to a query recommendation, is defined by the con-
tinuous space of interactions between every feature column
input to the BBF.

Uniform Search
A n-dimensional decision boundary consists of the closest
positions xq surrounding xs ∈ Rn, which give ŷs ̸= ŷq .
With the goal of identifying xq to reach the decision bound-
ary with Distance △′ = min(△′(xs, xq)), heuristics are es-
sential to avoid the impractical scale of a n-dim brute force
search over the feature space with complexity O(nk).

Evenly Distributed Search Over Surface of n-Sphere
To identify heuristics to begin an informed search, sparse
solution nodes are uncovered with a high degree of cover-
age over the surface of the n-dimensional decision bound-
ary. This can be abstracted to the simpler task of creating
an even distribution of points on the surface of an n-sphere
(Marsaglia 1972).
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Uniformly Distributed Search of Feature Space Given
a large number of n-dimensional unit vectors, with each di-
mension representing feature values of all fi ∈ xs, an iter-
ative search along each vector can be performed with steps.
Refer to Figure v.6 A5-A9 to demonstrate how Uniformly
Distributed Search precedes Informed Cluster Search. The
algorithm to identify RU sub-optimal solutions for use in In-
formed Cluster Search is outlined in Algorithm 1. Addition-
ally, let RH denote locally optimal feature stability solutions
uncovered by Informed Cluster Search. A feature scaler F
is defined for each feature dimension of the unit vector, to
amplify the step size as a function of the domain of each re-
spective feature dimension, s.t. F = [D(f1), . . . , D(fn)]

−1.
F ensures a common step multiplier across all features is
amplified for feature columns that have a higher range, such
that a step in each dimension of xq corresponds to a com-
parable change in conceptual distance from xs. F can al-
ternatively be described as the element-wise inverse of the
domain of each feature, given by the training data/expected
input domain, s.t. x ∗ F = xscaled

F . Let xu denote a ran-
domly generated unit vector of a n-sphere representing fea-
ture combination slope, and µ represent the step size for each
feature to be scaled by.

The uniformly distributed points xq ∈ RU aren’t strictly
required for the informed cluster search, however it pro-
vides an even distribution of samples to search for a global
optimum solution of feature instability. The inclusion of
this component is comparable to stochastic gradient de-
scent with restarts, where each sub-optimal solution is per-
sisted as a SGD restart position even spread from each other
(Loshchilov and Hutter 2016).

By leveraging a graph structure, each unique combina-
tion of nodes that are traversed to as a solution, or adjacent
node, is able to store a measure of distance from the source
node (xs), to specify the node’s position (xq) in the prior-
ity queue of Informed Cluster Search. The even distribution
of permutations in n-dimensional space provides a low com-
plexity method to identify neighboring locations in feature
space that lie on a decision boundary of ŷ.

Informed Cluster Search
The Informed Cluster Search component of DFEST is com-
parable to a conventional A* search, however it includes (1)
a direct descent from xq toward xs until a minimum distance
is reached, and (2) an adjacent cluster generation strictly or-
thogonal to the source node’s cluster. Refer to Figure 3 for a
demonstration of how the Informed Cluster Search obtains
RU from the uniformly distributed search and performs a
local search similar to stochastic gradient descent (SGD).

We present the Informed Cluster Search in the step-wise
representation:

• Perform Uniformly Distributed Search to identify RU to
be used as initial nodes in priority queue.

• Pop the query node closest to the source node from the
queue, & append to solutions list if ŷ′ ̸= ŷ, which is de-
termined by querying the BBF

• Calculate the feature-interaction cluster being expressed

by the query node, and mark as visited, or discard if al-
ready visited.

• Search directly from query node to source node with de-
fined number of steps, similarly to the precursor search
method, to approximate the minimum distance expressed
within the feature-interaction cluster.

• Calculate the feature-interaction clusters of the query
node and adjacent nodes.

• Generate query nodes at the center of adjacent feature-
interaction clusters, and push those to the priority queue.

Adjacent Cluster Search
Whenever a valid solution xqi is discovered in Informed
Cluster Search, every 1-way feature change is queried for the
solution’s feature-interaction cluster ci to identify directly
adjacent clusters to search next. Adjacent clusters whose
center xqj is a valid solution s.t. ŷqj ̸= xs undergo a linear
search to the direction of xs, in order to find the minimum
xq ∈ ci. The center xqj of the adjacent cluster ci is derived
as follows:

Algorithm 2: Center xqj of adjacent cluster
1: xqj = xs + (ci ∗ F ∗m)
2: r = Distance[F ∗m]

3: r =

√∑|F |
i F 2

i ∗m2

4: r = m ∗
√∑|F |

i F 2
i

5: m = r∑|F |
i F 2

i

6: xqj = xs +
F∗r∗c∑|F |
i F 2

i

where r = Distance(xs, xqj ), and m is calculated multiplier.

Ground Truth Evaluation of DFEST
There is no inherent ground truth to the most important
multi-way feature-interactions of a BBF trained on real
world data, and static high dimensional feature-interactions
are difficult to efficiently produce (Barr et al. 2020). We
construct a deterministic synthetic model that designates
a set of the top k most unstable (i.e. important) feature-
interactions. Demonstrating adequate performance of ex-
plainability frameworks on a synthetic ground truth model
builds trust in the generalizability of the frameworks to
explanations of real world BBFs. Given feature instability
as a measure of feature-interaction importance for a given
ŷs, a brute force full coverage explainability measure can
theoretically guarantee optimal instability discovery. This
ground truth method can be conceptualized as Friedman’s
H-Statistic, which provides an n-feature partial dependence
function. However, these types of methods scale exponen-
tially for n features and their range of values, and are thus
impractical as a ground truth for comparison of today’s stan-
dard explainability techniques. DFEST can approximate a
brute force method using the same objective function, while
utilizing an outside-in search strategy with heuristics of dis-
tance to map out a decision boundary in feature space clos-
est to the source node. Although this “model” is functionally
a single parameter decision tree, the nature of the output is
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comparable to that of an arbitrary BBF, as it is only the bi-
nary output that DFEST and other counterfactual methods
take into account when explaining a prediction. The syn-
thetic model dynamically calculates the quantifiable feature
instability of any arbitrary feature cluster ci in O(n) com-
plexity, as a feature weighted ascent from the predetermined
optimal feature instability cluster cmin.

Feature-Interaction Cluster Distance (Equation 2)

△(xs, cQuery) = △(xs, cMin) +
[ d∑

i

|cmini

− cQueryi| ∗mi

]
× increment.

The synthetic ground truth model takes a feature-
interaction cluster as input (cquery), e.g. (1,1,0,..,0) denot-
ing an interaction of the first 2 features, along with the
relative feature importance of every feature in the cluster
(m1, ...,mn), where m is the importance multiplier of the
respective feature. The resulting feature space gives a single
minimum feature-interaction cluster, with progressively less
significant feature-interaction importance for other clusters
(cquery’s) further from xs than the cmin, and added noise
from m. Let cQueryi represent the ith feature’s inclusion
where +1,−1 denote directional significance of the feature
in cQuery, and 0 denote disclusion from the feature in-
teraction. Every possible feature-interaction cluster decision
boundary distance △ from xs to the center of cquery in the
defined feature space is dynamically generated by calculat-
ing the difference of each feature position between cmin and
cquery. The decision boundary distance for cquery is defined
for the synthetic ground truth model as the distance from xs

to the center of cquery’s decision boundary as in Eq.(2).

Algorithm 3: Feature-Interaction Cluster Determination
1: Input xq = (f1, . . . , fn)q
2: cluster = [00, . . . , 0d]
3: if fmax > 0 then
4: cluster[fmax] = 1
5: else
6: cluster[fmax] = −1
7: end if
8: for fi ∈ f do
9: if | fmax

fi
|≤ 2 then

10: if fi > 0 then
11: cluster[fi] = 1
12: else
13: cluster[fi] = −1
14: end if
15: end if
16: end for
17: return cluster as cq

With a synthetic ground truth feature model defining
feature instability in arbitrary feature clusters outlined in
Eq.(2), DFEST must leverage Algorithm 3 to identify the
feature cluster that xq is a member of w.r.t. xs, in order
to search adjacent clusters in the Informed Cluster Search.
Given feature parameters in n-dimensional feature space:

(f1...fn), the corresponding feature-interaction cluster is
computed w.r.t. the distance of fmax, the feature with the
largest magnitude distance from the same scaled feature in
the source node, and that of ∀fi ∈ query node, as every
fi is orthogonal to fmax. Figure 2 illustrates the search of
a feature space, demonstrating the cluster calculation de-
scribed in Algorithm 2. Algorithm 3 is based on pairwise
ratios between the feature with the largest relative change in
magnitude from the source to query nodes w.r.t. every other
feature in the query node. This feature importance cluster-
ing process defines a static clustering threshold calculation
s.t. any node can be clustered in O(n) complexity. Feature
importance clustering has parallels to integrated Hessians
(Janizek, Sturmfels, and Lee 2020) and agglomerative con-
textual decomposition (ACD), which iteratively forms hier-
archical clusters based on interaction scores (Singh, Mur-
doch, and Yu 2018). Similarly, contextual decomposition
captures combinations of token inputs to LSTM models
leading to differential outputs (Murdoch, Liu, and Yu 2018).

Synthetic Ground Truth Discussion Ground truth ex-
plainability can help overcome the disagreement prob-
lem(Krishna et al. 2022) between different explainability
methods, when evaluated on a well defined explainability
interpretation such as feature instability. Work by (Bast-
ings et al. 2021) & (Zhou et al. 2021) construct single-way
ground truth feature permutation importances using partially
synthetic data grounded by a model’s tendency to assign
high feature importance to “shortcuts” and artifacts. These
ground truth models were ¿100% accurate, meaning they
still partially depended on unimportant features, and did
not thoroughly represent valid ground truth explainability.
Conversely, the fully synthetic ground truth explanations
proposed by DFEST provides inherent multi-feature impor-
tance that are not subject to error. Mechanistic interpretabil-
ity involves reverse engineering BBFs to provide mech-
anistic explanations for a model with predefined outputs,
which is accomplished in DFEST by creating a completely
known and deterministic synthetic ground truth explain-
ability model. Furthermore, recent work by Tracr (Lindner
et al. 2023) conceptualizes a ground truth transformer model
which can be used to evaluate current and future explainabil-
ity methods over transformers.

Loss Function for Feature Importance Ranking
Evaluation
Rank-aware evaluation methods are typically leveraged to
evaluate the top recommendations produced by RecSys
models. Leading evaluation methods include Mean Recip-
rocal Rank (MRR), Mean Average Precision (MAP), and
Normalized Discounted Cumulative Gain (NDCG) (Järvelin
and Kekäläinen 2002). These metrics are extremely valuable
in the practical evaluation of RecSys models (Gupta et al.
2020), as conventional accuracy loss functions and decision
support metrics that leverage confusion matrices such as pre-
cision, recall, and F1 scores operate at the individual and
total dataset level, respectively. Rank-aware evaluation met-
rics target the top k recommendations, enabling a more real
world application performance evaluation.
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State-of-the-art explainability frameworks provide a
ranked list of feature-interactions with associated magni-
tude as output, and thus require a rank-aware evaluation
when considering the top k feature-interaction importance’s.
Eq.(3) describes the rank-aware feature-importance evalua-
tion proposed in our work to evaluate DFEST and LIME
against a ground truth measure.

Feature-Interaction Importance Ranking Loss Function
(Equation 3)

loss =

k∑
i=1

[
min

k∑
j=1

[
(|ciindex

− gjindex
|+1) ∗ (

gi∑
x

|ci − gj |+1)
]
− 1

]
∗ 1

k
.

The loss function evaluates the ranking of explainability
frameworks (DFEST and LIME) on (1) the distance in rank-
ing position of a feature-interaction cluster from its ground
truth ranking position (He et al. 2017), as explicitly defined
by the synthetic ground truth model (Wu 2022), and (2) the
difference from the ground truth feature-interaction cluster.
The 2nd measure is required to account for LIME’s inability
to represent multi-way feature-interactions. In short, loss is
defined by the sum of the similarity in ranking of each of
the top k feature-interaction clusters generated by an eval-
uation framework and a synthetic ground truth model. The
feature-interaction importance ranking loss function is de-
fined by Eq.(3), where k is the number of unique feature-
interaction clusters (i.e., 8), (c1, ..., ck) are the top k DFEST
feature-interaction clusters, (g1, ..., gk) are the top k ground
truth feature-interaction clusters, and index is the rank of
feature-interaction cluster out of k.

Dynamic Synthetic Ground Truth Function for LIME
LIME’s architecture only accepts well defined models with
trained weights, thus the source code for LIME was al-
tered to allow for direct calls to the synthetic ground
truth model within the LimeTabularExplainer class (Ribeiro,
Singh, and Guestrin 2016b). Specifically, only the function
explain instance() leveraged the BBF for which the
goal was to explain the output of. Thus, when LIME pro-
duced a neighborhood of perturbed data points to train a re-
gression model based on the output of the BBF, it is trivial to
redirect calls intended for the BBF model to the well defined
synthetic ground truth model.

Evaluation and Experiments
The results of DFEST and LIME were expected to have very
similar outcomes given the same input, for one-way fea-
ture interactions. As DFEST is capable of searching through
multi-dimensional feature space, it is able to reflect the non-
linearity responsible for the output of deep models, in the
form of multi-way feature-interaction instability. For feature
space dimensions up to 64 features, DFEST demonstrated
significantly lower loss values than both LIME and a ran-
dom cluster ranking, as illustrated in Figure 4. The time
complexity is also noted. DFEST has various tunable hy-
perparameters, k precursor solutions, unit vector step size,

Figure 4: Comparison of DFEST, LIME, and Random
Explainability Against a Synthetic Ground Truth Feature
Space. DFEST significantly outperforms LIME on explain-
ing feature interactions in the ground truth feature space, as
the dimensionality increases to 64 input features. However,
DFEST and LIME perform similarly given 128 dimensional
input data. Such an order of high dimensional space can oc-
cur in real world implementations.

k A* solutions, and A* adjacent node learning rate. Evalu-
ation of DFEST with various hyperparameter combinations
on a ground truth model indicates the optimal settings to be
used for real BBFs with n-dimensional feature space, as il-
lustrated in Figure 5.

Datasets In the first experiment, a synthetic model was
constructed to function as a ground truth in the evaluation
of DFEST and LIME, using the feature-interaction impor-
tance loss function. In the second experiment, the Wiscon-
sin Breast Cancer (WBC) dataset (Dua and Graff 2017) was
used to train a sklearn logistic regression model (Pe-
dregosa et al. 2011), consisting of 30 continuous numerical
features, with binary training labels.

DFEST and LIME Evaluation on Synthetic Model
DFEST performance is preserved as the number of dimen-
sions increases, as long as the feature search space is appro-
priately scaled to account for the large increase in complex-
ity, as demonstrated in Figure 4. With a small RU , Informed
Cluster Search may not be able to locate the top k optimal
feature instability solutions. However, as RH increases, the
feature space is more thoroughly searched, and the top k op-
timal solutions more likely to be found. This is demonstrated
at the increase from the 16-32 dimensional feature space.
DFEST’s feature interaction cluster rankings typically in-
clude the correct top rankings with the correct magnitude for
each cluster, however may be in a slightly different order.

The decreasing curve illustrated in Figure 5 demonstrates
the ability of DFEST to achieve a meaningful increase in
performance while searching the feature space for optimal
multi-way feature instability, as a function of the number
of solutions identified by Informed Cluster Search. This is
due to additional time allowed for DFEST to perform sta-
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Figure 5: DFEST was performed for 30 independent iter-
ations, with Informed Cluster Search iteratively increasing
to 1500 by steps of 50. The synthetic ground truth fea-
ture space, as well as the number of uniform solutions RU

(10,000) passed as input to Informed Cluster Search re-
mained constant through each iteration.

bility descent along feature clusters that are approaching the
pre-defined ground truth minimum node. The curve in Fig-
ure 5 demonstrates that a sufficiently high number of RH

approaches high performance.

DFEST and LIME Evaluation on the WBC Dataset
DFEST offers an explainability output that has both di-
mension to explain the contributed instability of each fea-
ture in a feature-interaction cluster, and is dimensionless in
terms of a ranked order of top k important clusters, which
can be compared relatively across frameworks. The feature-
interaction cluster matrix presented in Figure .7 demon-
strates the top k most unstable feature-interaction clusters,
descending in importance from left to right. The relative
contribution of every feature to its cluster is preserved, and
patterns of significant feature stability and instability is ob-
served for features which are either all green or all white
for all 50 clusters returned by DFEST. The comparison of
DFEST and LIME in Figure .8 demonstrates considerable,
though significantly different, overlap in reported feature
importance, with both representations having similar expres-
siveness. However, LIME lacks the additional k-way cluster
analysis offered by DFEST in Figure .7. It is likely that com-
parison of the methods interpreting BBF output would show
greater differences due to LIME’s ignorance of non-linear
feature interactions.

Given the strict threshold for feature importance clus-
tering, the top 50 feature interaction clusters of Figure .7
clearly demonstrates that the clusters with the highest insta-
bility tend to have the same core unstable features, which are
the MOST unstable features in each of those clusters.

Conclusion
This paper demonstrates a novel conceptualization of a prin-
cipled feature importance metric for explainability and im-
plementation of a completely deterministic and interpretable
ground truth explainability measure, capable of both sin-
gle feature and n-way feature interaction measures. To ad-
dress the original objectives of this paper, (1) We imple-
mented a fully synthetic ground truth explainability measure
and used it to compare the feature importance accuracy of
DFEST against LIME. Future experiments hope to simplify
the synthetic ground truth model by defining a local decision
boundary as the surface of an off-origin n-sphere, where the
origin is the model input to be explained; (2) Supra-additive
effects are represented by the synthetic ground truth model
and DFEST, however more should be done to visualize and
interpret these interactions. (3) Figures 4 and .8 compare
the relative importance of different features between DFEST
and LIME, with DFEST demonstrating higher expressivity
in feature interactions.

Feature instability offers a well defined measure of multi-
way feature explainability over continuous space for BBF
predictions, however is not well defined for textual or image
data. Feature instability specifically conceptualizes a log-
ical, quantitative, and deterministic definition of post-hoc
explainability over a model’s decision space. DFEST is a
proof-of-concept method designed to utilize the newly de-
fined feature instability explainability measure and associ-
ated ground truth model, however is restricted to low di-
mensional DNNs due to scaling limitations as the number of
model inputs increases. Future methods can address categor-
ical features by projecting the features to continuous space
with learned embedding vectors, however this perpetuates
the scaling issue of high dimensionality. DFEST is indeter-
ministic as shown in Figures 4 and 5. Enabling measurement
of multi-feature interaction stability has numerous implica-
tions, including identification of opportunities for generat-
ing targeted synthetic data for retraining a model, essentially
pushing the decision barrier with precision to positions in
feature space.
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Appendix

Figure .6: Workflow of Feature Stability Descent and Tensor Search Explainability (DFEST). At a high level, DFEST functions
to explain the output of a model “BBF”: ys given input xs through a heuristic guided iterative counterfactual search over the
feature space of the model. A) Evenly distributed gradient descent restart points in representation space are identified by the
Uniform Distributed Search, B) Local minimums are found for these restart points using Informed Cluster Search & Adjacent
Cluster Search; C) The top k informed solutions are evaluated by the rank-aware evaluation, comparing DFEST to the ground
truth top k feature interactions.
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Figure .7: Top 50 feature interaction clusters for a given prediction from a model trained on the Wisconsin Breast Cancer
Dataset. Y axis labels display feature labels, with cluster feature instability decreasing from left to right, i.e. leftmost clusters
denote higher importance for explainability. Green boxes denote an increase if the feature is unstable (approaches decision
boundary) when in combination with the other features in its column, while red boxes denote the reverse. White boxes denote
features whose significant perturbation did not result in ŷq ̸= ŷs, i.e. are stable.

Figure .8: Feature importance comparison between DFEST & LIME for a given model prediction trained on the Wisconsin
Breast Cancer Dataset. (A) DFEST: The Feature Importance of DFEST was averaged from the top 50 clusters, and represents
which clusters are stable (0) and unstable (+/-). (B) LIME similarly displays features that contribute to and threaten the stability
of the prediction.
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