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ABSTRACT
Graph representation learning aims at preserving structural and

attributed information in latent representations. It has been studied

mostly in the setting of static graph. In this work, we propose a

novel approach for representation learning over evolutionary at-

tributed graph using the tool of normalizing flows for exact density

estimation. Our approach has three components: (1) a time-aware

graph neural component for aggregating graph information at each

time step, (2) an adapted graph recurrent component for updating

graph temporal contexts, and (3) a conditional normalizing flows

component for capturing the evolution of node representations in

latent space along time. The third component has two sub-models

of normalizing flows. One is used to capture the distribution of

node representations of arbitrary complexity by considering graph

temporal contexts as conditions. It learns invertible transformations

to map node representations into simple priors conditioning on

temporal contexts. The other one is dedicated to capture the evolu-

tionary patterns of prior distributions. Extensive experiments show

the proposed approach can outperform competitive baselines by a

significant margin for link prediction on future graph structure.

1 INTRODUCTION
Graph representation learning has been widely studied for learning

node latent representations of a static graph. However, real graphs

are dynamic because the graph structure and attributes information

are both constantly changing. Evolutionary attributed graph often

exhibit complex temporal patterns of the graph’s evolution over

time. For example, social network users establish and/or remove

links between each other via daily behaviors such as following,

mentioning and replying. And, the user’s attributes such as textual

features from her generated content are also changing. The updates

of graph structure and attributes need to be jointly considered for

modeling the complex temporal patterns. Most existing work on

static graph are not applicable on evolutionary attributed graph.

Learning node latent representations of evolutionary attributed

graph is greatly challenging because of its highly time-varying

graph structure and node attributes. Some recent efforts have been

made on modeling dynamic graphs [10–12, 15, 18]. But these meth-

ods have two main limitations: (1) they are not capable of modeling

exact temporal patterns in the latent space, and (2) they usually

suffer from low efficiency on inferring future graphs due to their
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stacked recurrent neural network (RNN) design. Effectively cap-

turing the temporal patterns and efficiently inferring future graph

can be beneficial for a broad range of real applications such as city

traffic forecasting [8], real-time event detection [9], and online user

demand prediction [16].

In this work, we propose a novel approach, called Evolutionary

Graph Normalizing Flows (EGNF), for representation learning over

evolutionary attributed graph. In particular, we leverage the normal-

izing flows [2, 3, 17], which is a powerful tool for exact density es-

timation, to learn the complex distribution of node representations

in latent space. The proposed framework is composed of three main

components: (1) a time-aware graph neural component admits the

autoregressive paradigm for aggregating graph information at each

time step, (2) an adapted graph recurrent component for updating

graph temporal contexts, and (3) a conditional normalizing flows

component for capturing the evolution of node representations

in latent space along time. Specifically, the third component can

be further decomposed into two sub-models of normalizing flows.

One is used to capture the distribution of node representations of

arbitrary complexity by considering graph temporal contexts as

conditions. It learns invertible transformations to map node rep-

resentations into simple priors conditioning on temporal contexts.

The other one is dedicated to capture the evolutionary patterns

of prior distributions. During the stage of inference, the proposed

model samples and maps conditional prior into node representa-

tions by directly applying the inverse of the learned normalizing

flows component. So, the proposed model can be greatly efficient

for inferring the structure of future unseen graph.

2 PROBLEM DEFINITION
2.1 Research problem
A static graph is denoted as G = (V, E) whereV denotes the set

of N nodes, i.e., |V| = N , and E denotes the set of M edges , i.e.,

|E | = M . The weighted adjacencymatrix ofG can be denoted asA ∈

RN×N
where each entryAu ,v ∈ [0, 1] represents the strength of an

edge eu ,v ∈ E between a pair of nodes u,v ∈ V . And, its attribute

matrix is denoted as X ∈ RN×Dr
where each row xv contains the

Dr -dim raw features of node v . A evolutionary attributed graph G

across a set of discrete time steps is defined as a series of observed

static graph snapshots, i.e., G :=
{
(G1,X1), . . . , (GT ,XT )

}
where

T is the number of time steps. Each single snapshot (Gt ,Xt ) for

t = 1, . . . ,T represents an intermediate state of G. So, the dynamics

of evolutionary attributed graph G along time can be revealed from

two aspects: (1) the change of graph structure

{
Gt }T

t=1
, and (2) the

change of node attributes

{
Xt }T

t=1
. For brevity, we useV to denote

all unique nodes, i.e.,V =
⋃T
t=1

Vt
.

Given such a evolutionary attributed graph G =
{
(Gt ,Xt )

}T
t=1

,

we aim to learn a function dyn(G) : V × {1, . . . ,T } → RDh that
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maps each graph nodev ∈ V into a Dh -dim (typically Dh ≪ N ,M)

latent representation vector htv at each time step t = 1, . . . ,T .
For any non-trivial evolutionary graph with T > 1, the learned

node representations Ht
:= [ht

1
, . . . , htN ]⊤ ∈ RN×Dh should pre-

serve both the information of current graph snapshot (Gt ,Xt )

and the temporal patterns of G up to time step t . Specifically, we
are interested learning Ht

that can be characterized by (1) reveal-

ing the historical evolutionary trend of G in previous snapshots

(G1,X1), . . . , (Gt−1,Xt−1); and, (2) being highly indicative about

the developing evolutions of G like link connections in the future.

2.2 Background
2.2.1 Static GNNs. A static graph can be modeled by a static GNN

in the form of stc(G,X) : V → RDh which maps each node v ∈ V

into a Dh -dim embedding hv . The learned H ∈ RN×Dh fuses the

graph structure G with node attributes information X. Spectral
method GCN [7] define stc as:

H(l+1) = σ (Â H(l )W(l )), (1)

where Â = I + D− 1

2 AD− 1

2 , D is degree matrix of G, I is identity
matrix, W(l )

contains model parameters of the l-th layer. This can

be seen as the relaxed spectral formulation of graph convolution

operator ⋆G . To avoid notation conflicts, we use superscript (l) in
parentheses to denote the depth of deep model in the following

presentation. Spatial methodsGraphSAGE [6] andGAT [14] realize

stc under the message passing framework [4]:

m(l+1)

N(v) = aдд(l )
({
msд(l )

(
h(l )v , h

(l )
u ,Au ,v

)}
∀u ∈N(v)

)
, (2)

h(l+1)
v = upd(l )

(
h(l )v ,m

(l+1)

N(v)

)
, (3)

where themessage functionmsд first generates contexts from neigh-

bor nodes N(v), the aggregation function aдд merges them into

a neighbor message embedding mN(v), and update function upd
then incorporates mN(v) into the node’s new representation. And

directly applying stc when G is actively evolving would fail to

capture the temporal patterns.

2.2.2 Normalizing flows. It provides a general mechanism for con-

structing complex probability distributions over continuous random

variables. Let Z ∈ RDh be a random variable with a known proba-

bility density function pZ : RDh → R, and let H ∈ RDh be another

random variable with complex probability distribution of interest.

The main idea is to express h ∼ pH (h) as an invertible and differen-

tiable transformation д of z ∼ pZ (z), i.e., h = д(z). Using the change
of variables formula, the density of H can be obtained by:

pH (h) = pZ (z)
��
det Jд(z)

��−1

= pZ (f (h))
���det Jf (h)��� , (4)

where Jд(z) ∈ RDh×Dh is the Jacobian of д evaluated at z, i.e.,

Jд(z) =
∂д
∂z , f is the inverse of д, i.e., z = f (h) = д−1(h), Jf (h) =

∂f
∂h is the Jacobian of f at h. Intuitively, one can image the д as

expanding/contracting the space in order to fit the density pZ into

pH . And the the new density pH is called a pushforward of density

pZ by the function д. The absolute Jacobian determinant

��
det Jд(z)

��
quantities the relative volume change in a small area at z due to д.

Constructing an arbitrarily complicated non-linear invertible

function д can be difficult. One principle approach to achieve this

is exploiting the property that composition of invertible and differ-

entiable functions is itself invertible. Specifically, let д(1), . . . ,д(L)

be a set of invertible and differentiable functions, it can be shown

that the composition function д = д(L) ◦ · · · ◦ д(1) is also invertible

and differentiable. The inverse and Jacobian determinant of д are:

д−1 =
(
д(L) ◦ · · · ◦ д(1)

)−1

= f (1) ◦ · · · ◦ f (L) = f , (5)

det Jд(z) =
∏L

l=1
det Jд(l )

(
z(l )

)
, (6)

where Jд(l )
(
z(l )

)
=

∂д(l )

∂z(l ) is the Jacobian of д(l ) and z(l ) = д(l ) ◦ · · · ◦

д(1)(z) = f (l+1) ◦ · · · ◦ f (L)(h) is the value of the l-th intermediate

flow. In this way, a set of bijective functions can be composed to

construct successively more expressive functions. For brevity, we

drop superscript and use д and f to denote composite normalizing

flows models that are adequately expressive.

3 PROPOSED FRAMEWORK
In this section, we present a novel approach Evolutionary Graph

Normalizing Flows (EGNF) for representation learning over evolu-

tionary attributed graph. The framework is illustrated in Figure 1.

3.1 Time-aware graph neural networks
For uncovering the temporal patterns of evolutionary attributed

graph G, its intermediate graph structure and node attributes at

each time step needs to be modeled and transformed into an uni-

fied latent space beforehand. Most existing methods simply apply

off-the-shelf GNNs on each snapshot

{
(Gt ,Xt )

}T
t=1

with sharing

parameters. This leads to independent snapshot aggregations across

time which ignore the informative context of previous changes of

graph. To facilitate enabling time-aware aggregations on each graph

snapshot, it is of great importance to make the base GNN model be

aware of the temporal contexts of evolutionary attributed graph.

Let’s suppose we have already learned Ct−1 ∈ RN×Dc
summa-

rizing the temporal contexts of G. Each row ct−1

v reflects the local

changing trend associated with node v before time t . We propose a

time-aware graph neural module which aggregates graph structural

and attributes information from snapshot (Gt ,Xt ) with temporal

contexts Ct−1
as conditional variable. This can be achieved by in-

jecting Ct−1
into the aggregated neighbor message (see Eqn. (2))

and the node representation updating process (see Eqn. (3)). Particu-

larly, we add temporal contexts of neighbor nodes as input into the

message functionmsд, and add the target node’s temporal context

into the representation update function upd :

mt ,(l+1)
u =msд(l )

(
ht ,(l )v , ht ,(l )u ,Atu ,v , c

t−1

u

)
= Atu ,v

(
ht ,(l )v + FNN

(l )
m

( [
ht ,(l )u ; ct−1

u

] ))
,

(7)

ht ,(l+1)
v = upd(l )

(
ht ,(l )v ,mt ,(l+1)

N(v) , c
t−1

v

)
= FNN

(l )
u

[
ht ,(l )v ;mt ,(l+1)

N(v) ; ct−1

v

]
,

(8)

where ct−1

u is the temporal context of neighbor node u ∈ N(v),

FNN
(l )
m is arbitrary deep model for fusing u’s embedding ht ,(l )u with

ct−1

u (with adding self’s embedding ht ,(l )v as skip connection), ct−1

v is

the temporal context of target node v , and FNN
(l )
u is arbitrary deep
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Figure 1: Overall framework of the proposed EGNF.

model for fusing v’s old embedding ht ,(l )v and neighbors’ message

mt ,(l+1)

N(v) with ct−1

v . In practice, we implement FNN
(l )
m and FNN

(l )
u

as one-layer feedforward network with the sigmoid nonlinearity.

This time-aware GNN module Ht = stc ′
(
(Gt ,Xt ) | Ct−1

)
(C0 = I)

considers temporal contexts of previous time when aggregating on

current snapshot and admit the autoregressive paradigm.

3.2 Graph temporal contexts
For updating the temporal contexts Ct at each time step, a straight-

forward way is to employ a deep recurrent architecture. GCRN [13]

replaced the multiplications between input and dense parameter

matrices in GRU [1] with the standard graph convolution operator

⋆G to build a hybrid graph recurrent model. But this method can

only handle changes of node attributes because ⋆G is fixed by the

static graph structure. We propose to generalize the graph recurrent

model into truly evolutionary attributed graph setting where the

structure and attributes of graph are jointly evolving. In particular,

we define a new temporal graph convolution operator ⋆Gt based

on graph structure at t and substitute it into the model:

Ut = σ
(
WU ⋆Gt

[
Ct−1

;Ht ] ) ,
Rt = σ

(
WR ⋆Gt

[
Ct−1

;Ht ] ) ,
C̃t = tanh

(
WC ⋆Gt

[
Rt ⊙ Ct−1

;Ht ] ) ,
Ct = Ut ⊙ Ct−1 + (1 − Ut ) ⊙ C̃t ,

(9)

where Ut ∈ RN×Dc
is the update gate, Rt ∈ RN×Dc

is the reset

gate, and WU ,WR ,WC ∈ RDc×Dh are model parameters.

3.3 Graph conditional normalizing flows
We have obtained node latent representations Ht

via time-aware

aggregations on the current snapshot (Gt ,Xt ). We have also up-

dated the graph temporal contexts Ct up to time t . For effectively
modeling the temporal patterns of evolutionary attributed graph

G, we propose a novel deep architecture leveraging conditional

normalizing flows [17] to learn invertible transformations between

the distribution of node latent representations and a prescribed

simple prior distribution. In particular, we introduce the graph

temporal context as a conditional variable, and transform complex

conditional distribution of node representations pH |C (Ht |Ct ) into

a simple conditional prior pZ |C (Zt |Ct ). Specifically, the tempo-

ral conditioning is realized from two aspects. On one hand, we

formulate the prior distribution as a diagonal Gaussian with its

parameters conditioning on the temporal contexts Ct of graph:

pZ |C
(
Zt |Ct

)
= N

(
Zt | µ(Ct ),σ (Ct )

)
, (10)

where µ and σ are deep models for inferring the mean and variance

parameters of Z |C . Intuitively, conditioning Z on temporal contexts

C allows the prior to reflect the general trend of graph changes.

On the other hand, we also impose conditional constraint on the

invertible transformation of normalizing flows д = f −1
which are

bijective betweenZ andH , i.e.,Ht = д
(
Zt ,Ct

)
= д

(
f
(
Ht ,Ct

)
,Ct

)
.

In practice, we choose to implement д and f using coupling flows

model [3] because of its simplicity. We pass Ct to scale and transla-

tion functions. So, the conditional coupling of д is specified as:
Ht
⟨1:d−1⟩

= Zt
⟨1:d−1⟩

⊙ exp

(
c1

( [
Zt
⟨d :Dh ⟩

;Ct
] ))
+

c2

( [
Zt
⟨d :Dh ⟩

;Ct
] )
,

Ht
⟨d :Dh ⟩

= Zt
⟨d :Dh ⟩

,

(11)

where ⟨1 : d − 1⟩ denotes the operator of column-wise partition,

e.g., Ht = [Ht
⟨1:d−1⟩

;Ht
⟨d :Dh ⟩

]; c1, c2 : RDh+Dc → RDh are scaling

and translation functions of the coupling layer (implemented as

single layer FNN with the sigmoid nonlinearity). And, the inverse

function f can be easily obtained as:
Zt
⟨1:d−1⟩

=
(
Ht
⟨1:d−1⟩

− c2

( [
Zt
⟨d :Dh ⟩

;Ct
] ))

⊙

exp

(
−c1

( [
Zt
⟨d :Dh ⟩

;Ct
] ))
,

Zt
⟨d :Dh ⟩

= Ht
⟨d :Dh ⟩

,

(12)

where the Jacobian determinant of f is exp(−
∑
i c1([Zt⟨d :Dh ⟩

;Ct ])i ).
We alternate the partition of dimensions ⟨1 : d − 1⟩ and ⟨d : Dh⟩

between two consecutive conditional coupling layers to ensure all

elements in д and f get sufficiently transformed. So, the conditional

density of node latent representations H can be obtained as:

pH |C
(
Ht |Ct

)
= pZ |C

(
Zt |Ct

) ���det Jд (
Zt
)���−1

= pZ |C
(
Zt |Ct

) ����det ∂д (
Zt ,Ct

)
∂Zt

����−1

= pZ |C
(
f
(
Ht ,Ct

)
| Ct

) ���det Jf (
Ht ) ���

= pZ |C
(
f
(
Ht ,Ct

)
| Ct

) ����det ∂ f (
Ht ,Ct

)
∂Ht

���� .
(13)

Then, by substituting the form of conditional prior (Eqn. (10)),

and functions of д and f (Eqn. (11) and (12)) into Eqn. (13), we can

conduct exact density estimation on node latent representations.

Another major advantage of normalizing flows lies in its high

efficiency during the inference stage. We aim to sample and trans-

form conditional prior Zt into node representationsHt
by applying

the learned flows д in the generative direction. But both the sam-

pling and generation are conditioned on temporal contexts Ct . To
reduce the time complexity of generating Ct via the graph recur-

rent architecture (Sec. 3.2), we propose to model the distribution

of temporal contexts Ct also using a normalizing flows model.

Specifically, we introduce variableO as an isotropic Gaussian prior,



i.e., pO (O) = N(O | 0, I), and learn the invertible transformations

Ct = д̄(O) = д̄
(

¯f (Ct )
)
between Ct and simple prescribed O:

pC (Ct ) = pO (O)
��
det Jд̄(O)

��−1

= pO ( ¯f (Ct ))
���det J ¯f (C

t )
��� , (14)

where д̄ and
¯f are implemented using standard coupling flows [3].

During the inference time, we first sample and transform priors O
to get graph temporal contexts Ct = д̄(O); next, we generate the
conditional prior Zt |Ct , then transform into node representations

Ht = д
(
Zt ,Ct

)
for predictions on evolutionary attributed graph.

3.4 Complexity Analysis
Assuming the per-batch time complexity of the proposed EGNF’s

time-aware graph neural component stc ′ (Sec. 3.1) is O
(
ΠL
l=1

sl

)
in

principle [6] (where L is the structural depth and sl is the neighbor
sampling size at the l-th layer), and the per-batch time complexity

of EGNF’s adapted graph recurrent component (Sec. 3.2) at each

time step takes constant time. The per-batch time complexity of

EGNF during training stage is O

(
T ΠL

l=1
sl

)
, which increases lin-

early with the product of time steps T and neighbor sampling size

sl . At inference time, assuming the transformation of any normal-

izing flows takes constant time, the time complexity of EGNF for

inferring the structure of future graph is O (N ), which only grows

linearly with number of nodes in evolutionary attributed graph G.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of EGNF. We test on

predicting the structure of next future graph in all experiments.

4.1 Datasets
Evolutionary co-authorship graphs. We built a sequence of

yearly co-authorship graphs by collecting 226, 611 papers from

2001 to 2010 in computer science from the Microsoft Academic

Graph. Authors were ranked by their number of papers. The top

2, 000 and 10, 000 were used to make two datasets denoted by G2K

au

and G10K

au
. The venues and the paper title’s words were used as node

attributes after filtering out infrequent ones. We have 316 venues

and 3, 549 words in G2K

au
; and 448 venues, 6, 442 words in G10K

au
.

Evolutionary virtual currency graphs. We used 2 benchmark

datasets Bitcoin-OTC and Bitcoin-Alpha of Bitcoin transaction net-

works denoted by Gotc

bc
and G

alp

bc
. These are two who-trusts-whom

networks of bitcoin users trading on public platforms. Specifically,

we followed the treatments as provided in [11] to form a sequence

of graphs with 137 time steps (each for about 2 weeks), and use

node in/out degree as input features.

4.2 Experimental settings
Baselines.We compare EGNF against the state-of-the-art methods

for modeling evolutionary attributed graph:

• DySAT [12]: This dynamic network embedding method only

models graph structural changes and cannot handle node

attributes. All graph structures are used for training.

• DCRNN [8]: The most recent graph structure and all node

attribute matrices are used for training. The node embed-

dings outputted by the last diffusion convolutional layer are

used for predicting future graph structure.

• EvolveGCN [11]: All graph snapshots are provided as in-

put. We use its link prediction loss for training, and use

the node embeddings outputted by the last evolving graph

convolution unit for predicting future graph structure.

• VGRNN [5]: All graph snapshots are provided as input for

training. We use the advanced model variant with semi-

implicit hierarchical construction of mixing prior distribu-

tion. The learned probabilistic node representations are used

for predicting future graph structure.

Evaluation metrics. For link prediction on future graph, we use

Area Under the precision-recall Curve (AUC) and F1 measure.

4.3 Overall performance (RQ1)
The performance of the proposed EGNF and baselines for predict-

ing future graph structure are provided in Table 1. We can see the

proposed EGNF can almost outperform all baseline methods across

datasets and metrics (except for AUC on G10K

au
and Gotc

bc
). By lever-

aging normalizing flows to preserve the exact temporal patterns of

the evolutionary attributed graph, EGNF can score an AUC of .151

on G2K

au
(+4.1% relatively over VGRNN) and score and F1 of .441 on

G
alp

bc
(+4.0% relatively over EvolveGCN). The significant perfor-

mance improvements brought by EGNF over competitive baseline

methods validate the contributions of modeling and preserving

the exact temporal patterns of evolutionary attributed graph via

normalizing flows over time. In addition, we note that EGNF can

produce stable performance for predicting the future graph struc-

ture. It yields relatively small values of variation across datasets

and metrics (only slightly larger than EvolveGCN). Although the

inference stage of EGNF includes random sampling over (condi-

tional) priors, the learned invertible transformations of normalizing

flows can effectively map sampled priors into informative node

representations for predicting the future graph structure.

4.4 Ablation study (RQ2)
We build four model variants by disabling/removing certain com-

ponent(s) out, and compare EGNF against these variants:

• (base): All three components are removed from EGNF (and

adopt a single normalizing flows model for learning node

representations). This variant serves as the baseline variant

for verifying the contribution of each component.

• (w/o tGNN): We remove Ct−1
from themsд and upd func-

tions of the proposed time-aware graph neural networks

component (see Sec. 3.1). This equals to perform indepen-

dent aggregations on graph snapshot at each time step

• (w/o tGCRN): We replace the proposed temporal graph con-

volution operator⋆Gt with the conventional one being fixed

at the first graph structure G1
in the proposed graph recur-

rent component (see Sec. 3.2). This equals to using a fixed

graph structure for updating temporal contexts.

• (w/o cNF): We remove the conditioning on temporal context

Ct from д and f for estimating node representations, and

disable invertible transformations д̄ and
¯f for estimating Ct



Table 1: Overall performance of the proposed EGNF and baseline methods for predicting the graph structure at the last time
step on four real evolutionary attributed graph data sets. Bold and underlined values indicate the best and second performance.

G2K

au
G10K

au
Gotc

bc
G
alp

bc

Method AUC F1 AUC F1 AUC F1 AUC F1

DySAT [12] .117 ± .008 .212 ± .007 .112 ± .011 .203 ± .012 .287 ± .007 .290 ± .006 .312 ± .006 .331 ± .006

DCRNN [8] .123 ± .003 .224 ± .003 .121 ± .004 .218 ± .005 .312 ± .002 .338 ± .001 .340 ± .002 .352 ± .002

EvolveGCN [11] .133 ± .001 .256 ± .001 .127 ± .001 .249 ± .002 .414 ± .002 .420 ± .001 .415 ± .001 .424 ± .001

VGRNN [5] .145 ± .003 .266 ± .005 .144 ± .003 .262 ± .004 .354 ± .004 .385 ± .005 .362 ± .003 .382 ± .004

EGNF .151 ± .002 .275 ± .002 .143 ± .002 .269 ± .002 .412 ± .002 .428 ± .003 .426 ± .002 .441 ± .002

Table 2: Performance of the proposed EGNF and its variants for predicting the graph structure at the last time step on four
real evolutionary attributed graph data sets. Relative improvements over the base variant are shown in parenthesis.

G2K

au
G10K

au
Gotc

bc
G
alp

bc

Method AUC F1 AUC F1 AUC F1 AUC F1

EGNF (base) .141 ± .001 .262 ± .001 .138 ± .001 .257 ± .002 .378 ± .001 .396 ± .002 .389 ± .001 .407 ± .001

EGNF .148 ± .002 .270 ± .001 .143 ± .001 .268 ± .001 .386 ± .001 .407 ± .003 .409 ± .002 .429 ± .001

(w/o tGNN) (+5.0%) (+3.1%) (+3.6%) (+4.3%) (+2.1%) (+2.8%) (+5.1%) (+5.4%)

EGNF .150 ± .001 .273 ± .002 .141 ± .002 .266 ± .002 .406 ± .001 .421 ± .002 .417 ± .001 .436 ± .001

(w/o tGCRN) (+6.4%) (+4.2%) (+2.2%) (+3.5%) (+7.4%) (+6.3%) (+7.2%) (+7.1%)

EGNF .144 ± .001 .267 ± .002 .138 ± .002 .258 ± .002 .378 ± .003 .398 ± .002 .398 ± .002 .417 ± .001

(w/o cNF) (+2.1%) (+1.9%) (+0.0%) (+0.1%) (+0.0%) (+0.1%) (+2.3%) (+2.5%)

EGNF (full)

.151 ± .002 .275 ± .002 .143 ± .002 .269 ± .002 .412 ± .002 .428 ± .003 .426 ± .002 .441 ± .002

(+7.1%) (+5.0%) (+3.6%) (+4.7%) (+9.0%) (+8.1%) (+9.4%) (+8.4%)

(Sec. 3.3). This equals using a standard normalizing flows

model to capture the temporal patterns.

We present the results of ablation study in Table 2. WE can see the

variant EGNF (w/o cNF) generally yield the lowest values of perfor-

mance improvement over EGNF (base). We note it almost performs

the same as EGNF (base) on G10K

au
and Gotc

bc
. This demonstrates

modeling the distribution of node representations using conditional

normalizing flows is critic for predicting the future graph struc-

ture. In contrast, by fully including the conditional normalizing

flows component for preserving graph temporal patterns, the pro-

posed EGNF consistently outperforms all variants across datasets

and metrics. It scores an AUC of .412 on Gotc

bc
which is +9.0% rel-

atively over EGNF (base) and EGNF (w/o cNF). And, it scores an

F1 of .441 G
alp

bc
which is +8.4% relatively over EGNF (base) (and

+5.8% relatively over EGNF (w/o cNF)). We conclude that all three

components of EGNF are important and can be complementary to

model the temporal patterns of evolutionary attributed graph.

5 CONCLUSIONS
In this work, we proposed a novel approach for representation

learning over evolutionary attributed graph utilizing conditional

normalizing flows. It has three components: (1) a time-aware graph

neural component for aggregating graph snapshot at each time

step, (2) an adapted graph recurrent component for updating graph

temporal contexts, and (3) a conditional normalizing flows compo-

nent for capturing the evolution of node representations in latent

space along time. The proposed approach is efficient in inference by

sampling and mapping conditional prior into node representations

using the inverse of learned flows component.
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