
Early Fraud Detection with Augmented Graph Learning
Tong Zhao*, Bo Ni*, Wenhao Yu, Meng Jiang

Department of Computer Science and Engineering, University of Notre Dame, USA
{tzhao2,bni,wyu1,mjiang2}@nd.edu

ABSTRACT

Having an effective fraud detection system can help social media
to identify suspicious behaviors or accounts. Early detection is
crucial to minimize losses if the fraud is ongoing. Existing detec-
tion methods perform effectively when good amounts of observed
behavior data are available (which sometimes has been too late);
however, at an early stage when the observations are limited, the
performance would not be satisfactory. In this work, we propose
Alfrad, a novel self-training framework that uses behavior data
augmentation for early fraud detection. It has a Seq2Seq-based be-
havior predictor that predicts (i) whether a user will adopt a new
item or an item that has been historically adopted and (ii) which
item will be adopted. Alfrad utilizes the prediction results of fraud
detection methods to make better prediction of future behavior
and uses the augmented graph to help fraud detection methods
to achieve higher performance while not requiring any additional
data. It explores the mutually beneficial relationship between fraud
detection and behavior prediction. Experiments show that Alfrad
improves the performance of different kinds of fraud detection
methods. With Alfrad augmented methods, the performance of
fraud detection at an earlier stage is comparable with and/or better
than non-augmented methods on a greater amount of observed
data.

1 INTRODUCTION

During the last twenty years, we have witnessed a boom in social
networks and other web-based services. While it certainly makes
people’s life easier and more convenient, it also indirectly creates
a market for malicious users. One can earn huge profits by sell-
ing fake followers on Instagram and Twitter, or fake reviews on
Yelp and Amazon. Some malicious service providers could also
help one disseminating information such as ads or fake news by
manipulating botnets on social networks. It turns out that these
behaviors have negative impact on our society: fake news could
have tremendous effects on political activities; fake reviews con-
stantly undermine customers’ ability to make fair judgements; and
fake followers will cause fake popularity, giving false credentials
and breaking a competitive market. In this paper, we mainly focus
on the suspicious behavior that is often being referred to as link-
farming which involves creating false edges in a social network. For
example, in a Facebook "who-likes-what-pages" graph, the fraud-
sters might create false edges that make certain pages look more
popular or more legitimate [2].

Various efforts have been made in the data mining community
to address the problem of link farming, including graph mining
based methods such as Fraudar [9], LockInfer [12] etc., and graph
machine learning based methods like Dominant [4]. Despite their
effectiveness, we nevertheless witness a decline in performance

* Equal contribution.

when data is insufficient or incomplete. However, detecting the
fraudsters after they have achieved their purpose is not ideal in real
usage. This in turn poses a grim challenge for fraud detection at
early stage: we want to prevent the negative impact incurred by
fraudsters when observed data is not sufficient while existing fraud
detection methods would inevitably underperform for the scarcity
of available observations. Thus, in this paper, we aim to answer the
following question: Is it possible to achieve a similar performance
at an early stage when observed behavior data is incomplete? In
other words, can we design a framework so that the performance of
fraud detection at an earlier stage is comparable with and/or better
than the performance on greater amount of data?

Present work. In this paper, we propose Early Fraud Detection
(Alfrad), a novel self-training framework that is constructed by
two components: a fraud detection method that detects fraudu-
lent users (un)supervisedly and a Seq2Seq user behavior forecast-
ing model that augments the graph. The two components inter-
dependent on each other in the sense that the information derived
from the first could be a useful input for the second, and vice versa.
Shown in Figure 1 is a sample iteration: the behavior forecasting
model consists of a two-step decoder to (i) predict whether the next
item a user will adopt comes from his/her behavior history and to
(ii) predict which item will be adopted through similarity matching.
When making predictions, it takes advantage of the fraudster de-
tection results from the previous iteration based on the assumption
that malicious users tend to post more frequently. Also, we assume
that the fraudulent users (often consist of bot accounts controlled
by central servers) have a higher tendency to repeatedly adopt
the same items while the normal users will have a consistent pat-
tern of discovering new information. The augmentation model can
hence update both the graph structure and attribute information
simultaneously based on the newly predicted items.

We thus summarize our contribution as follows:
• To the best of our knowledge, this is the first work that
studies the problem of early-stage fraud detection on social
media by learning for behavior forecasting.

• We propose a novel framework that improves the perfor-
mance of early fraud detection by behavior forecasting and
behavior graph augmentation.

• We conduct extensive experiments on a real-world dataset
and obtain better performance than both unsupervised and
supervised fraudulent detection methods when data is rela-
tively insufficient and incomplete.

2 RELATEDWORK

Our work aims to address the early-stage fraud detection problem
using a two-step sequence predictor for data augmentation, so in
this section, we will first review related works in suspicious behav-
ior detection. Then, we will shift our focus to some of the relevant

1

DLG at KDD ’20, August 23–27, 2020, San Diego, California USA Tong Zhao*, Bo Ni*, Wenhao Yu, Meng Jiang

A B C A B C

B D E F G H
?

A B C D E F

t

A B C D E F G H

augmentation

A B C A B C

{history}
{history}

B C

…

…

B D E F G H

{vocab.}
{vocab.}

G H

…

…

binary classification:

multiclass classification:

Supervised
GNN

Logistic
Regression …supervised:

unsupervised: Density-based
algorithms

Spectral
methods …

Early fraud detection:

accuracy after augm
entation

befor
e au

gmen
tation

ttearly tlate
Acc.after(tearly) = Acc.before(tlate)

Figure 1: One pass for the early fraud detection framework: The Seq2Seq model first predict the items that a user will adopt

in the future based on his/her behavior history. (1) The first step is to predict whether the item has been in the user’s behavior

history or is a new item in the global “vocabulary.” The second step is to predict the item from the historical items or from the

vocabulary. (2) The framework then uses the predicted items to augment user-item bipartite behavior graphs. The predicted

items and links will improve the performance of a wide line of fraud detection methods including semi-supervised learning

(e.g., GCN [13]) and unsupervised learning (e.g., Fraudar [9], LockInfer [12]). Our framework’s performance of fraud detection

at an earlier stage is comparable or better than non-augmented methods with more observed data.

works related to our framework, including sequence prediction,
dynamic graph learning, and behavior data mining.
Unsupervised Fraud Detection. Suspicious behavior detection
has received a great amount of academic interest in the past decade
[2]. We categorize these methods into unsupervised and supervised
methods. Unsupervised methods approach the problem by taking
certain assumptions regarding fraudulent behaviors. LockInfer
[11] investigates the lockstep behavior using a generalized Spo-
kEn [21] method, which utilizes pairs of eigenvectors of graphs
to detect the "eigen-spokes" patterns. Dominant [4] was a graph
auto-encoder based deep model that detects anomalous nodes from
attributed networks. Rev2 [14] was an iterative algorithm that
detected outlier users with low fairness scores. Zhao et al. [30]
proposed an actionable algorithm to block the dense subgraphs on
bipartite graphs.
Graph Neural Networks. In recent years, following the initial
idea of convolution based on spectral graph theory [1], many spec-
tral GNNs have since been developed and improved by [3, 7, 13, 15,
17, 29]. As spectral GNNs generally operate (expensively) on the full
adjacency, spatial-based methods which perform graph convolution
with neighborhood aggregation became prominent [5, 6, 18, 19, 22],
owing to their scalability and flexibility [26]. Moreover, several
recent works proposed more advanced architectures which add
residual connections to facilitate deep GNN training [16, 25]. More
recently, GNN-based models were also proposed for tasks in varies
fields of research such as natural language processing [27] and
behavior modeling [23].

3 PROBLEM DEFINITION

Consider a bipartite graph G𝑡 = (U,V, E𝑡) at timestamp 𝑡 , where
U is a set of 𝑚 users, V is a set of 𝑛 items and E𝑡 is the set of
edges at time 𝑡 . Let X𝑡 ∈ R(𝑚+𝑛)×𝑘 be the feature matrix at time
𝑡 that contains 𝑘-dimensional raw features of all nodes. We also

denote y ∈ {0, 1}𝑚 as labels for users where fraudsters get 1 and
others get 0. Following the above notations, we first define the task
of fraud detection, and then proceed to give a formal definition of
early-stage fraud detection.

Definition 1. (Fraudulent Behavior Detection) Given the bipartite
graph G and feature matrix 𝑋 ∈ R(𝑚+𝑛)×𝑘 , find a function 𝑔 :
G,X → y′ that returns a vector of prediction logits y′ ∈ [0, 1]𝑚 .

Next, we define early-stage fraud detection. At time 𝑡 , we aim to
design a framework that will achieve comparable or better perfor-
mance with the current cross-sectional data than with the cross-
sectional data at time 𝑇 where 𝑇 > 𝑡 . Formally, our goal is to find a
data augmentation framework satisfying the following criteria:

Definition 2. (Early Stage Fraudulent Behavior Detection) Let
ℎ : (R𝑚,R𝑚) → R be an evaluation metric such that a larger value
is more desirable holding other conditions the same. Let 𝑔 be a fraud
detection method. Design a framework 𝑓 : G𝑡 ,X𝑡 → G′

𝑡 ,X
′
𝑡 that

satisfies ℎ(𝑔(𝑓 (G𝑡 ,X𝑡)), y) ≥ ℎ(𝑔(G𝑡 ,X𝑡), y).

4 METHODS

In this section, we present our proposed Alfrad approach towards
the above problem. We discuss the two key components of the
Alfrad framework. We first focus on the fraud detection module;
then we discuss the Seq2Seq behavior predictor module.

4.1 Fraud Detection Module

The first component of our proposed Alfrad framework is a fraud
detection module. It is worth pointing out that this part of Al-
frad is not model-specific: any fraud detection/node classification
model(e.g., Fraudar [9], CatchSync [10], GCN[13], GraphSAGE
[6]) suffices to be the this component of the framework and could
have its performance improved with Alfrad. Without the loss of

2

Early Fraud Detection with Augmented Graph Learning DLG at KDD ’20, August 23–27, 2020, San Diego, California USA

generality, let the fraud detection model 𝑔 be defined as:

𝑔 : G,X → y′, (1)

where𝑦′ ∈ [0, 1]𝑚 is the predicted suspiciousness of the user nodes
of being fraudsters.

For graph representation learning methods (graph neural net-
works) that is capable of learning low-dimensional node repre-
sentations as well as giving predictions, we also take advantage
of the learned representations for user nodes. Without the loss
of generality, here we take the widely used Graph Convolutional
Network (GCN) [13] as a fraudulent user nodes detection method,
because it’s capable of semi-supervised node classification. The
graph convolution operation of each GCN layer is defined as:

H(𝑙+1) = 𝜎 (D̃− 1
2 ÃD̃− 1

2H(𝑙)W(𝑙)), (2)

where 𝑙 indicates the layer, H𝑙 is the node embedding matrix gen-
erated by 𝑙-th layer,W is the weight matrix of the co-responding
layer, Ã = A + I is the adjacency matrix with added self-loops, D̃
is the diagonal degree matrix �̃�𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 , and 𝜎 (·) denotes a

nonlinear activation such as the Rectified Linear Unit (ReLU).
Thus the GCN used for fraud detection can be notated as:

𝑔𝑔𝑐𝑛 : G,X → Z, y′, (3)

where 𝑔𝑔𝑐𝑛 is a multi-layer GCN model, Z is the node embedding
matrix generated by the second last layer, and y′ is still the predicted
user suspiciousness. We use a standard binary cross entropy loss
for training the GCN.

4.2 Behavior Predictor

We aim to explore the user-level sequential data for behavior mod-
elling. In other words, given the item history of each user 𝑢 ∈ U,
we want to be able to forecast what item this user will post next.
For this purpose, we employ an Seq2Seq model as our building
block for behavior modelling in order to capture the information
embedded in user’s item history.
Encoder. We can regard each user’s item history as a sequence of
features that are constructed as a prior knowledge. For example, for
content-based items, it could be the embedded representation of the
texts, but it could also be other features like in/out degrees. Suppose
user 𝑢𝑖 has an item history of 𝑗 items, we can denote the sequence
of item history for user 𝑢𝑖 as 𝑥 (𝑖) = {x(𝑖)1 , . . . , x(𝑖)

𝑗
}, of which each

item x(𝑖)
𝑗

∈ R𝑘 stands for the feature vector of the corresponding
item node. If we have a fraudster prediction model that gives user
embedding (GCN etc.), say 𝑧𝑖 for user𝑢𝑖 , the item history could also
be constructed as 𝑥 (𝑖) = {x(𝑖)1 ⊕ z𝑖 , . . . , x

(𝑖)
𝑗

⊕ z𝑖 }, where ⊕ stands
for concatenation. For the ease of reading we omit the user index
𝑖 in the following of this section, denoting x(𝑖)

𝑗
as x𝑗 . and index 𝑖

will be mainly referred to as the current time stamp.
We adopt Long Short Term Memory network (LSTM) [8] as

encoder to capture contextualized representation for each item in
the sequence. The encoder contains only a forward LSTM as we
want to make predictions based on the history items. Hence the
hidden state for each item is calculated by:

h𝑖 , c𝑖 =
−−−−→
LSTM(x𝑖 , h𝑖−1, c𝑖−1), (4)

where h𝑖 and c𝑖 refer to the hidden state and cell state in 𝑖-th step
respectively.
Decoder. When decoding the hidden features, we build a two-step
decoder for behavior pattern mining: first, we decide if the user
is going to select an item that has already been selected; then we
want to minimize the distance between the predicted item and the
real item in the feature space. The first step is motivated by our
observation that fraudulent users tend to have more repeated items,
which could be explicitly modelled through learning. These two
tasks are jointly optimized through our two-step decoder.

We first decode the hidden states and cell states for each item,
the readout operation is defined as following:

𝑝𝑖 = 𝜙 (W𝑟ℎ · h𝑖 +W𝑟𝑐 · c𝑖 + b𝑟), (5)

where W𝑟ℎ ∈ R |h |×𝑘 , W𝑟𝑐 ∈ R |c |×𝑘 , b𝑟 ∈ R𝑘 are trainable parame-
ters, 𝜙 is the sigmoid function, and 𝑝𝑖 is the probability of repeating
item, i.e, larger 𝑝𝑖 indicates that the user if more likely to perform
a repeat behavior (e.g., repost a message that the user has posted in
the past). Let 𝑝𝑖 be the ground truth of repeating behavior where
𝑝𝑖 = 1 if the next item is a recurring item, and 𝑝𝑖 = 0 otherwise.
Then we define the loss for prediction of repetition as:

L𝑟𝑒𝑝 = −
𝑗∑

𝑖=1

(
𝑝𝑖 log(𝑝𝑖) + (1 − 𝑝𝑖) log(1 − 𝑝𝑖)

)
. (6)

Moreover, we use another readout function to decode the pre-
diction of next item by

x̂𝑖+1 = W𝑝 · h𝑖 + b𝑝 , (7)

where W𝑝 ∈ R |h |×𝑘 , b𝑝 ∈ R𝑘 are trainable parameters and x̂𝑖+1
is the predicted feature vector for the next item. Then the loss
function of item prediction can be defined as

L𝑝𝑟𝑒𝑑 =
1
𝑗

𝑗∑
𝑖=1

| |x̂𝑖 − x𝑖 | |21 . (8)

Therefore, we can train the behavior predictor by the following
loss function:

L = L𝑟𝑒𝑝 + 𝛼 · L𝑝𝑟𝑒𝑑 , (9)
where 𝛼 is a hyperparameter.
Inference. After the model is well trained, it can be easily used to
predict the future items for each user node. However, one question
remains, that is, how many items should we predict for each user?
With the assumption of fraudulent users tend to have higher degree
to achieve their goals (e.g., hot topic boosting), we aim to make
more predictions for the users that are more likely to be fraudsters.
Hence we utilize the predicted suspiciousness scores y′ for each
user given by the fraud detection module (Eq. 1/3) to decide the
number of predictions we make for each user 𝑢𝑖 :

𝑛𝑖 =
⌊
𝑦′𝑖 · 𝜅

⌋
, (10)

where 𝜅 ∈ Z+ is a hyperparameter to control the maximum number
of predictions.

During inference, teacher forcing is not used. Hence when each
x̂𝑖+1 is predicted by Eq.(7), the next input item is determined by
cosine-similarity:

x𝑖+1 = argmin
x∈X𝑖

(
x̂𝑖+1 · x

| |x̂𝑖+1 | | × | |x| |

)
. (11)

3

DLG at KDD ’20, August 23–27, 2020, San Diego, California USA Tong Zhao*, Bo Ni*, Wenhao Yu, Meng Jiang

where X𝑖 is the current vocabulary calculated by

X𝑖 =

{
X 𝑝𝑖 ≤ 0.5
{x1, ..., x𝑖 } 𝑝𝑖 > 0.5 (12)

We thus obtain a new edge list E ′ and are able to update the
graph by adding these new edges.
Self-training. As the fraud detection module and the behavior
predictor can mutually enhance each other, i.e., the fraud detection
results can help behavior predictor to make better predictions and
the augmented graph enriched with predicted behaviors can also
help fraud detection methods. We make this an iterative process: we
first run the fraud detection method on the original graph, use the
results together with a trained behavior predictionmodel to forecast
future user behaviors, and augment the graph with the predicted
user behaviors. Then we re-run the fraud detection method on the
updated graph and repeat the above process for several iterations.

5 EXPERIMENTS

In this section, we evaluate the proposed Alfrad framework for
early-stage fraud detection on a real-world dataset.

5.1 Experimental Settings

5.1.1 Datasets.
Overview.We use a real world dataset constructed from Tencent
Weibo, one of the most popular Chinese micro-blog sites between
2010 and 2015. Particularly, the dataset is crawled in November 2011,
consisting posts and public user profiles. We construct the graph
as a "who-post-what" graph where the user nodes are registered
users and item nodes are micro-blog posts. Edges occur between
users and posts when the user (re)posted the post. The features for
each post is generated from its text with GloVe[20]; the features
for each user is the average features of all connected posts.
Labeling. The data does not come with golden labels, so we utilized
rule-base labeling strategy that validated by human labeling. We
first sampled 1000 users from the full dataset, along with links to
their public profiles. Then several Data Labeler manually labeled
these users by reading their post and profile information, and ob-
serving their temporal behavior pattern. Specifically, we conclude
the following criteria that we followed when labelling users:
(i) Suspicious Timestamp: The major conspicuous characteristics of
suspicious users is their bot-controlled behavior. It is truly hard for
bots to be programmed to have human-like posting pattern. As we
observe, suspicious users usually post in a fixed time interval. For
example, an user with many posts is identified as suspicious since
if 2/3 of her posts are posted with an interval of 10 ± 2 seconds.
(ii) Deactivated Accounts: We identify those users whose QQ ac-
count and Wechat account are deactivated as suspicious users since
Wechat and QQ are twomajor online communication tools in China.
Researchers have shown that over 90 percent of Chinese network
users are also Wechat users [24].
(iii) Malicious post/repost content: If an account post certain content
or malicious links multiple times, we will identify it as a malicious
account candidate.
(iv) Suspicious Username: We also employ suspicious username as
an important clue. For example, if a user has a highly random name,
we consider it as a candidate. Then combining other factors, we
can usually identify a fraudster confidently.

With these criteria, we coded rules that can reach over 96%
accuracy in the sampled 1000 users and labeled the whole dataset
with the rules. The final dataset consists of 40235 users in total,
within which 3283 users are identified as malicious and 36952 users
are identified as benign.
Early-Stage Detection.We manually modify the dataset in order
to fit our task. We divide the dataset based on the percentage of
user’s posts to recreate the temporal evolvement of the graph. For
example, a 10% graph is to select the first 10% posts of each user.
Table 1 briefly summarizes the statistics of the divided graphs.

Table 1: Graph Statistics (Total # of Users: 40235)

Cut Percentage Total Posts Total Edges
20 3126 45024
40 3163 51784
60 3218 59020
80 3250 66866
100 3288 75285

5.1.2 Baselines.
We compare the improvement of our Alfrad framework over the
following fraud detection methods without graph augmentation:
• Fraudar [9]: An unsupervised fraud detection method with
graph mining that aims to address the issue of camouflage.
• LockInfer [11]: An unsupervised fraud detection method that
uses the lockstep pattern of fraudsters as a clue for detection.
•GCN [13]: An semi-supervised graph neural network. The neural
structure has been empirically demonstrated to be useful in the
area of fraudster detection [28].
•GraphSAGE [6]: An inductive graph neural network model that
can also be used on semi-supervised node classification talk.

5.2 Experiment Results

Table 2 summarizes the performance of Alfrad over the base-
line methods. We use average precision (AP) and area under ROC
curve (AUC) as our evaluation metric. As we can clearly see, our
proposed Alfrad framework is able to significantly improve all
the baseline methods. Both graph-mining based methods and su-
pervised graph learning methods are improved. Specifically, Al-
frad improves 1.1%(Fraudar), 6.0%(LockInfer), 1.2%(GCN) and
1.4%(GraphSAGE) on average. We observe that GNN-Based meth-
ods perform better than other fraudster detection methods in gen-
eral for the ablility of graph machine learning models to learn both
the topological structure as well as node embedded representations.

Figure 2 presents the results in line plots for clearer analysis.
We can observe that in general, Alfrad is able to accomplish the
early-stage fraudster detection task as we defined in section 3. Par-
ticularly, for Fraudar, we achieve roughly the same performance
in the 50% graph with Alfrad as in the 70% graph without Al-
frad; for LockInfer, since the performance without Alfrad is not
monotonically increasing, we cannot draw a comparative conclu-
sion; for GCN, Alfrad achieves the same level of performance in
10% graph as the baseline GCN in the 50% graph; similarly, despite
some irregular behavior in larger graphs, GraphSAGE achieves
the same level of performance in 20% graph with Alfrad as in 80%

4

Early Fraud Detection with Augmented Graph Learning DLG at KDD ’20, August 23–27, 2020, San Diego, California USA

Table 2: Alfrad performance across different methods and different amount of data.

Fraudar LockInfer GCN GraphSAGE
Graph Original +Alfrad Original +Alfrad Original +Alfrad Original +Alfrad

Percentage AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

10 51.6 13.9 52.0 14.3 53.7 8.5 57.0 9.5 77.7 32.9 78.7 33.3 79.4 34.8 81.0 37.7

20 53.8 16.1 54.3 16.9 56.6 8.8 59.8 10.4 77.0 31.6 79.2 33.1 79.5 35.9 81.0 36.2

30 54.6 16.2 55.3 17.2 59.2 9.9 60.4 12.3 77.1 32.3 80.5 35.9 79.8 37.5 81.7 37.3

40 56.0 17.4 57.1 18.5 54.7 9.4 61.3 12.4 77.4 32.9 79.3 36.9 79.0 34.2 82.9 40.1

50 57.1 18.4 58.2 19.2 55.5 10.3 61.3 12.4 78.2 33.8 79.8 38.1 81.4 40.7 81.0 38.0

60 57.1 18.4 57.6 19.2 54.1 10.0 62.6 17.3 79.1 35.2 80.1 38.5 81.2 40.8 82.4 41.2

70 58.1 19.0 58.8 15.4 55.4 10.0 61.6 15.2 79.0 37.0 79.9 37.7 80.5 39.0 82.1 36.5

80 59.2 18.9 60.3 20.2 55.9 9.9 61.7 12.9 79.4 37.4 79.2 34.2 82.1 41.7 81.2 33.1

90 59.5 19.4 60.3 20.2 56.1 9.8 62.3 12.3 79.7 39.4 80.0 39.1 81.2 39.5 82.3 40.3

100 60.4 20.0 61.2 21.3 56.4 10.4 64.5 13.7 79.9 40.2 80.9 39.4 81.4 39.3 84.0 41.5

20 40 60 80 100
Graph Percentage

52

54

56

58

60

62

AU
C

Fraudar
Fraudar+Alfrad

(a) Fraudar

20 40 60 80 100
Graph Percentage

54

56

58

60

62

64

AU
C LockInfer

LockInfer+Alfrad

(b) LockInfer

20 40 60 80 100
Graph Percentage

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0
AU

C

GCN
GCN+Alfrad

(c) GCN

20 40 60 80 100
Graph Percentage

80

81

82

83

84

AU
C

GraphSage
GraphSage+Alfrad

(d) GraphSAGE

Figure 2: Performance measued in AUC change as graph size increases

2 4 6 8 10
Iteration

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

AU
C

LockInfer

(a) LockInfer + Alfrad

2 4 6 8 10
Iteration

0.770

0.775

0.780

0.785

0.790

0.795

AU
C

GCN

(b) GCN + Alfrad

Figure 3: Performancemeasured in AUC change as iteration

continues

without Alfrad. Although for methods like LockInfer, the base-
line is not monotonically increasing, it is also worth pointing out
that for all of the baseline fraudster detection methods, we are able
to observe substantial improvements in absolute performance on
average, which are evidence for Alfrad’s powerful ability to model
the evolution of the graph structure and user-item interactions.
IterationConvergence. In figure 3, we randomly select two graphs
and plot the evolution of theAlfradwith LockInfer andGCN (one
unsupervised graph-mining method and one semi-supervised ma-
chine learning method). The first is the 8% graph and the second is
the 4% graph. Qualitatively, they generally have the same behavior:
the performance quickly increases in the first couple of iterations,

and oscillates around a value as more iteration continues. We can
observe a more smooth line for GCN than for LockInfer, which
we think is because GCN’s capability of learning low-dimension
node representations, which are also used in the fraudster detection
module. In contrast, the graph-mining based methods like LockIn-
fer relies more on the graph topological structure and do not learn
any node representations, making the improvement less stable. But
still, it is largely consistent with our original supposition that the
iterative process will reach a steady state as more iteration happens,
demonstrating the mutually beneficial relationship between the
two main tasks - fraud detection and behavior forecasting.

6 CONCLUSION

In this work, we propose a novel early-stage fraud detection frame-
work Alfrad that consistently improve the existing fraudster de-
tection methods in the task of early-stage detection when graph is
temporally incomplete. In summary, our work manages to model
both the node representation and graph topology evolution through
behaviour modelling. The experiment results based on the real
world dataset demonstrates the effectiveness of Alfrad on the task
of early-stage fraud detection.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation IIS-1849816.

5

DLG at KDD ’20, August 23–27, 2020, San Diego, California USA Tong Zhao*, Bo Ni*, Wenhao Yu, Meng Jiang

REFERENCES

[1] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[2] Peng Cui, Meng Jiang, and Christos Faloutsos. 2016. Suspicious Behavior Detec-
tion: Current Trend and Future Directions. IEEE Computer Society (2016).

[3] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in neural information processing systems. 3844–3852.

[4] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep anomaly
detection on attributed networks. In Proceedings of the 2019 SIAM International
Conference on Data Mining. SIAM, 594–602.

[5] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learn-
able graph convolutional networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1416–1424.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[7] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[9] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camouflage. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 895–904.

[10] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014.
Catchsync: catching synchronized behavior in large directed graphs. In Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining. 941–950.

[11] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014.
Inferring strange behavior from connectivity pattern in social networks. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining. Springer, 126–138.

[12] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2016.
Inferring lockstep behavior from connectivity pattern in large graphs. Knowledge
and Information Systems 48, 2 (2016), 399–428.

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining. 333–341.

[15] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2018.
Cayleynets: Graph convolutional neural networks with complex rational spectral
filters. IEEE Transactions on Signal Processing 67, 1 (2018), 97–109.

[16] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:
Can gcns go as deep as cnns?. In Proceedings of the IEEE International Conference

on Computer Vision. 9267–9276.
[17] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph

convolutional neural networks. In Thirty-second AAAI conference on artificial
intelligence.

[18] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5115–5124.

[19] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. 2014–2023.

[20] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global vectors for word representation. In In EMNLP.

[21] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju,
and Faloustsos Christos. 2010. Eigenspokes: Surprising patterns and scalable
community chipping in large graphs. Advances in knowledge discovery and data
mining (2010).

[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[23] Daheng Wang, Meng Jiang, Munira Syed, Oliver Conway, Vishal Juneja, Sriram
Subramanian, and Nitesh V Chawla. 2020. Calendar Graph Neural Networks for
Modeling Time Structures in Spatiotemporal User Behaviors. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining.

[24] Wikipedia contributors. 2020. Wechat— Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/WeChat [Online; accessed 14-June-2020].

[25] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018).

[26] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[27] Wenhao Yu,Mengxia Yu, Tong Zhao, andMeng Jiang. 2020. Identifying referential
intention with heterogeneous contexts. In Proceedings of The Web Conference
2020. 962–972.

[28] Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang,
and Lizhen Cui. 2020. GCN-Based User Representation Learning for Unifying
Robust Recommendation and Fraudster Detection. SIGIR (Information retrieval)
20 (2020).

[29] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil
Shah. 2020. Data Augmentation for Graph Neural Networks. arXiv preprint
arXiv:2006.06830 (2020).

[30] Tong Zhao, Matthew Malir, and Meng Jiang. 2018. Actionable objective optimiza-
tion for suspicious behavior detection on large bipartite graphs. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 1248–1257.

6

https://en.wikipedia.org/wiki/WeChat

	Abstract
	1 Introduction
	2 Related work
	3 Problem Definition
	4 Methods
	4.1 Fraud Detection Module
	4.2 Behavior Predictor

	5 Experiments
	5.1 Experimental Settings
	5.2 Experiment Results

	6 Conclusion
	Acknowledgments
	References

