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ABSTRACT

Graph neural networks (GNNs) have been widely used to learn

node representations from graph data in an unsupervised way for

downstream tasks. However, when applied to detect anomalies (e.g.,

outliers, unexpected density), they deliver unsatisfactory perfor-

mance as existing loss functions fail. For example, any loss based

on random walk (RW) algorithms would no longer work because

the assumption that anomalous nodes were close with each other

could not hold. Moreover, the nature of class imbalance in anomaly

detection tasks brings great challenges to reduce the prediction

error. In this work, we propose a novel loss function to train GNNs

for anomaly-detectable node representations. It evaluates node

similarity using global grouping patterns discovered from graph

mining algorithms. It can automatically adjust margins for minority

classes based on data distribution. Theoretically, we prove that the

prediction error is bounded given the proposed loss function. We

empirically investigate the GNN effectiveness of different loss vari-

ants based on different algorithms. Experiments on two real-world

datasets show that they perform significantly better than RW-based

loss for graph anomaly detection.

1 INTRODUCTION

Detecting anomalies from large-scale graphs is an important task

on many real-world applications. There are two main types of

graph anomalies: graph outliers (e.g., fake reviewers) and unexpected

dense blocks in graph’s adjacency matrix (e.g., spammers, botnets).

To learn node representations for such downstream tasks, Graph

Neural Networks (GNNs) have been highly recognized for their

abilities of aggregating attributed information from local neighbor-

hood [26, 41, 44]. Usually, the models have two to four layers (i.e.,

#hops in the local neighborhood), sufficient for aggregation; to train

the model parameters in an unsupervised manner (when labels are

hardly available), random walk (RW) algorithms can discover more

“global properties” (i.e., node pair-wise similarity in longer distance)

that form RW-based loss on the last layer [14, 47].

However, we found that existing GNN models performed poorly

on benchmarks in the task of graph anomaly detection. The reason

is that graph anomalies do not have the aforementioned RW-based

global properties. In other words, nodes of the same class might not

be closer in the graph than those of different classes. For example,

the graph outliers (e.g., fake reviewer group U+ in Figure 1a) do

not have to be connected nor have common neighbors. They share

global properties of being outliers (away from the majority) on the

graph. Another example is that when a graph’s adjacency matrix

has multiple dense blocks (e.g., social botnet groups {U+,𝑖 }𝐵𝑖=1 in
Figure 1b), the nodes in different blocks do not have to be connected

while having similar global properties of creating unexpected den-

sity. How to effectively train GNNs for graph anomaly detection

by capturing proper global properties is important and non-trivial.
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Figure 1: New global properties and new loss functionsmust

be defined to train effective GNNs for graph anomaly de-

tection. Nodes in different anomalous groups might not be

reachable within random-walk distance.

Designing a proper loss is non-trivial because the GNN models,

after trained with the loss, are expected to accurately predict minor-

ity groups (e.g., outliers) from class-imbalanced data [6]. Compared

with the node population of entire graph, graph outliers (e.g., fake

reviewers) and/or nodes in dense blocks (e.g., botnet accounts) are

the minority. Such severe imbalance is detrimental to model per-

formance: When representations were not properly trained, the

models would meet over-fitting on the minority classes and would

perform poorly on test/unseen data [6]. Imbalanced machine learn-

ing has been studied from many perspectives [9, 18]; however, to

the best of our knowledge, no existing work has been done to ad-

dress the problem of reducing predictive error on imbalanced data

for unsupervised graph representation learning.

Present work. In this paper, we evaluate node pair-wise similarity

using the “global properties” discovered by graphmining algorithms,

and we present a novel error-bounded Graph Anomaly Loss (GAL)

that is designed based on the similarities to learn effective node

representations for the task of graph anomaly detection.

Here the graph mining algorithms refer to the algorithms that

use heuristics (e.g., greedy search, spectral methods) to identify

abnormal node groups from graph data. For example, Akoglu et

al. [1], Rayana et al. [36], and Kumar et al. [30] proposed efficient

algorithms to detect graph outliers on web platforms by measur-

ing the distance of their behavioral patterns from the pattern of
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the majority. Jiang et al. [23, 24] and Hooi et al. [20] identified

botnets by measuring the unexpectedness of dense bipartite cores

and greedily looking for them in large social networks. However,

these algorithms ignore node individual identity and attributed

information, assuming all the nodes in a group must have the same

characteristics and the same label. Though the assumption is too

strong to work on itself, these algorithms capture global structural

information which can be used to train GNN parameters, specif-

ically, to supervise the process of feature aggregation from local

neighborhood. The GNN models will take advantage of both the

local and global contexts for effective graph anomaly detection.

Our proposed GAL can be generalized for both categories of

graph mining algorithms, i.e., graph outlier detection [1, 30] and

dense block detection [20, 23, 24] algorithms, to train GNNs for

different purposes. It can be applied to all types of existing GNN

algorithms such as GCN [26], GAT [41], and GraphSAGE [14].

Moreover, GAL automatically encourages larger margins for minor-

ity classes. It learns proper margins from the global imbalanced data

distribution discovered by graph mining algorithms. So it creates

better generalization on predicting minority classes. Theoretically,

we obtain and prove the bound on prediction error.

Here we summarize the important features of our proposed GAL:

• Generalizability: GAL variants include loss functions for

different tasks of graph anomaly detection such as outlier

detection and unexpected density detection. It can be applied

to train an arbitrary graph neural algorithm.

• Effectiveness: GAL captures global properties when ran-

dom walk-based loss fails. It trains GNNs effectively for

graph anomaly detection. Experiments on two real-world

datasets, aiming at detecting two different kinds of anom-

alies, demonstrate that any GNN algorithm trained by the

proposed GAL can perform significantly better.

• Theoretical guaranteed performance: GAL creates bet-

ter generalization on patterns of minority groups. It main-

tains a bounded test prediction error on imbalanced data.

2 RELATEDWORK

In this section, we survey research work of five related topics.

Imbalanced learning. Learning with imbalanced data has always

been a challenging problem for machine learning. Most existing

work focused on sampling and generating techniques. These algo-

rithms either under-sample/over-sample the data objects [8, 32] or

generate new data objects for the minority classes [9, 17]. [25, 28]

proved that generalization error for both linear and non-linear mod-

els with hinge losses is bounded. Recently, Cao et al. [6] showed

that the error bound could be found on imbalanced datasets.

Graph representation learning. The goal is to learn node repre-

sentations in a low-dimensional space using random-walk paths

or factorized features [12, 13, 15, 34, 40, 48]. These algorithms are

transductive as they directly train node embeddings for individ-

ual nodes and require retraining or additional training to generate

embeddings for new nodes. DeepWalk [34] and Node2Vec [13]

learned node embeddings by performing word embedding mod-

els Word2Vec on “corpus” of nodes generated by random walk.

BiNE [12] extended DeepWalk and optimized for bipartite graphs.

DeepFD [43] learned the node embeddings with an encoder-decoder

structure specifically for the task of fraud detection.

Graph neural networks. GNNs are deep learning architectures

for graph structured data. The core idea is to learn node represen-

tations through local neighborhoods. Kipf et al. [26, 27] proposed

graph convolutional network (GCN) for semi-supervised graph

representation learning. GCN is a transductive model that requires

the calculation of whole graph Laplacian during training. Many

inductive GNNs [33, 41, 44, 45] that follow a neighborhood aggre-

gation scheme are proposed in recent years. In these models, the

representation of a node is computed by recursively aggregating

representations of its neighbors. More recently, GNN-based models

were also proposed for tasks in varies fields of research such as

natural language processing [46] and behavior modeling [42].

Graph outlier detection. The goal is to find outlier nodes in large

graphs [3]. Traditional density-based clustering methods [7, 16] re-

garded nodes in sparse regions as outliers. Similar approaches have

been developed for bipartite graphs [39]. OddBall [2] detected out-

lier anomalies in weighted graphs. BirdNest [19] was a Bayesian

inference model for rating networks that modeled user rating be-

haviors and detected outliers. Rev2 [30] was an iterative algorithm

that calculated reviewer fairness scores and considered users with

low scores as outliers. Dominant [10] was a graph auto-encoder

based deep model that detects anomalous nodes from attributed

networks.

Unexpected density detection. The goal is to find suspicious

nodes by looking for dense blocks in the graph’s adjacency matrix.

SpokEn [35] found the “spokes” pattern on pairs of eigenvectors

of graphs. LockInfer [24] identified pattern of communities based

on singular vectors of graphs. fBox [38] located mini-scale attacks

missed by spectral techniques.CatchSync [23] andCrossSpot [22]

found the lockstep behaviors made by fraudulent users. Several

methods [37] utilized dense subgraph detection algorithms on graph

or tensor data to locate the suspicious dense blocks. Hooi et al. [20]

showed that the edge density-based suspiciousness of subgraph

can be maximized with approximation guarantee. Zhao et al. [49]

proposed an actionable algorithm to block the dense subgraphs on

bipartite graphs.

3 PROPOSED METHOD

3.1 Problem Definition

The goal of our approach is to learn low-dimensional representa-

tions of user nodes on a bipartite graph for detecting anomalous

users. Suppose that U is the set of users, V is the set of items

(e.g., products, hashtags), and R = {𝑟𝑢,𝑣 |𝑢 ∈ U, 𝑣 ∈ V}, where 𝑟𝑢,𝑣
denotes the weight of the edge between node 𝑢 and node 𝑣 . The

problem is defined as follows:

Given a bipartite graph𝐺 (U,V,R) and a set of user’s node feature
vectors {x𝑢 ∈ R𝑑𝑥 ,∀𝑢 ∈ U} (where 𝑑𝑥 is the dimension of raw

features), find a mapping function of the representations of user

nodes 𝑓 : 𝑢 ∈ U → z𝑢 ∈ R𝑑 where 𝑑 is the number of latent

dimensions in user embeddings. We expect the user representations

are optimized for the task of anomaly detection by preserving both

user’s node attribute information and proper global properties.
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Currently most GNNs are designed for homogeneous graphs by

default. GNNs generate embeddings of a node by aggregating the

embeddings from nodes in its local neighborhood. The assumption

is that neighboring nodes have related information and/or similar

characteristics. However, on a bipartite graph, this assumption

does not hold as neighbors are different types of nodes. Hence in

order to have GNNs better perform on bipartite graphs, rather than

aggregating embeddings from immediate neighbors, we aggregate

from 2-hop neighbors which are the same type as the target node.

3.2 Distribution-aware Anomaly Margin Loss

Traditionally, in order to train the network model in an unsuper-

vised manner, RW-based loss functions are often applied to learn

the output representations, z𝑢 ,∀𝑢 ∈ U, and to tune the weight

matrices W𝑘 ,∀𝑘 ∈ {1, ..., 𝐾} via stochastic gradient descent. The
RW-based loss encourages nearby nodes to have similar represen-

tations as well as enforcing the representations of disparate nodes

to be distinct, which can be formatted as [45]:

Lrw (𝑢) = E𝑢+∼U𝑢+,𝑢−∼U𝑢− max{0, z𝑇𝑢 z𝑢− − z𝑇𝑢 z𝑢+ + Δ}, (1)

where Δ denotes a fixed margin hyper-parameter,U𝑢+ denotes the

set of user nodes that are reachable with a fixed length random-

walk starting from 𝑢, and U𝑢− denotes U \ U+. However, as we
mentioned before, it is neither proper nor effective when the task

is to detect anomalies on graphs. Task-specific loss functions are

desired. Fortunately, researchers have proposed algorithms about

learning with imbalanced data [6, 25, 28] and mining anomalies

from graph data [3, 20, 23, 30]. Hence we propose a task-specific

class-distribution-aware graph anomaly loss that is able to utilize

the results of these unsupervised algorithms. Herewe first introduce

the class-distribution-aware margin loss function.

Let𝑦𝑢 denote the the label of user node𝑢 (note that user nodes in

different dense blocks should have different labels). We assume that

the class-conditional distribution P(𝑢 |𝑦𝑢 ) is the same at training

and testing. Then let P𝑗 denote the class-conditional distribution,
that is, P𝑗 = (𝑢 |𝑦𝑢 = 𝑗), For our graph neural network model

𝑓 : U → R𝑑 , we use function 𝑔 : U × U → R to denote the

similarity of the representations of any two user nodes 𝑢 and 𝑢 ′:

𝑔(𝑢,𝑢 ′) = 𝑓 (𝑢)𝑇 · 𝑓 (𝑢 ′), (2)

and 𝐿𝑏𝑎𝑙 [𝑔] to denote the standard 0-1 test error on the balanced

data distribution:

𝐿𝑏𝑎𝑙 [𝑔] = Pr

(𝑢,𝑗)∼P𝑏𝑎𝑙

[ min

𝑦𝑢+=𝑗
𝑔(𝑢,𝑢+) < max

𝑦𝑢−≠𝑗
𝑔(𝑢,𝑢−)] . (3)

The error 𝐿𝑗 for class 𝑗 is then defined similarly as:

𝐿𝑗 [𝑔] = Pr

𝑢∼P𝑗

[ min

𝑦𝑢+=𝑗
𝑔(𝑢,𝑢+) < max

𝑦𝑢−≠𝑗
𝑔(𝑢,𝑢−)] . (4)

Let 𝑛 𝑗 be the number of user nodes in class 𝑗 and 𝑆 𝑗 = 𝑢 : 𝑦𝑢 = 𝑗

denote the set of user nodes with label 𝑗 . Define the training margin

for class 𝑗 as:

𝛾 𝑗 = min

𝑢∈𝑆 𝑗

(
min

𝑦𝑢+=𝑗
𝑔(𝑢,𝑢+) − max

𝑦𝑢−≠𝑗
𝑔(𝑢,𝑢−)

)
, (5)

where 𝛾𝑚𝑖𝑛 = min{𝛾1, . . . , 𝛾 𝑗 } is the widely used training margin

in previous studies [28]. Then we let 𝐿𝛾,𝑗 denote the margin loss

for class 𝑗 when training:

𝐿𝛾,𝑗 [𝑔] = Pr

𝑢∼P𝑗

[ min

𝑦𝑢+=𝑗
𝑔(𝑢,𝑢+) < max

𝑦𝑢−≠𝑗
𝑔(𝑢, 𝑣 ′) + 𝛾], (6)

and let �̂�𝛾,𝑗 denote its empirical variant. For a hypothesis class G,
we use

ˆℜ(G) to denote the empirical Rademacher complexity of

margin for class 𝑗 :

ˆℜ𝑗 (G) =
1

𝑛 𝑗
E𝜎

sup𝑔∈G

∑
𝑢∈𝑆 𝑗

𝜎𝑢 [ min

𝑦𝑢+=𝑗
𝑔(𝑢,𝑢+) − max

𝑦𝑢−≠𝑗
𝑔(𝑢,𝑢−)]

 ,
(7)

where 𝜎 is a vector of i.i.d. uniform {−1, +1} bits. Here we consider
the bound below for balanced test distribution by considering the

margin of each class, which allows us to design distribution-aware

margin loss function that is suitable for the imbalanced data.

Theorem 3.1. [6]With probability 1−𝛿 over the randomness of the

training data, for all choices of class-dependentmargins𝛾1, 𝛾2, . . . , 𝛾𝑘 >

0, all hypotheses 𝑔 ∈ G will have balanced-class generalization

bounded by:

𝐿𝑏𝑎𝑙 [𝑔] ≤
1

𝑘

©«
𝑘∑
𝑗=1

�̂�𝛾 𝑗 , 𝑗 [𝑔] +
4

𝛾 𝑗

ˆℜ𝑗 (G) + 𝜀 𝑗 (𝛾 𝑗 )
ª®¬ , (8)

where 𝜀 𝑗 (𝛾) ≜

√
log log

2
(
2max𝑢,𝑣∈U,𝑔∈G |𝑔 (𝑢,𝑣) |

𝛾
)+log 2𝑐

𝛿

𝑛 𝑗
is typically a low-

order term in 𝑛 𝑗 . Concretely, the Rademacher complexity
ˆℜ𝑗 (G) will

typically scale as

√
𝐶 (G)
𝑛 𝑗

for some complexity measure 𝐶 (G), in
which case:

𝐿𝑏𝑎𝑙 [𝑔] ≤
1

𝑘

©«
𝑘∑
𝑗=1

�̂�𝛾 𝑗 , 𝑗 [𝑔] +
4

𝛾 𝑗

√
𝐶 (G)
𝑛 𝑗

+ 𝜀 𝑗 (𝛾 𝑗 )
ª®¬ . (9)

Note that although the losses and empirical Rademacher com-

plexity of margins are defined different from those in Theorem 2

in [6], it can be proved that the above inequality still holds.

The balanced generalization error bound (Eq. 9) suggests that in

order to improve the generalization of minority classes, we should

enforce larger margins for them. However, manually assigning

larger margins for minority classes may lead to sub-optimal margin

for the frequent class and hence hurt the model’s performance.

Thus here we take the binary classification problem as an example

of showing how to obtain the optimal trade-off.

When 𝑘 = 2, we aim to optimize the balanced generalization

error bound in Eq. 9, which can be simplified to (after removing con-

stant factors, common factor 𝐶 (G) and low order term 𝜀 𝑗 (𝛾 𝑗 )) [6]
1

𝛾1
√
𝑛1

+ 1

𝛾2
√
𝑛2
. (10)

Although the it is hard to get the optimal margins with the above

equation as they are complicate functions of the parameters in 𝑔(·),
we can figure out the relative scales between the two margins.

Suppose we have 𝛾∗
1
, 𝛾∗

2
> 0 that minimize the equation above, we

observe that any 𝛾 ′
1
= 𝛾∗

1
−𝛿 and 𝛾 ′

2
= 𝛾∗

2
+𝛿 (where −2𝛾∗

2
< 𝛿 < 𝛾∗

1
)

can be realized by the same parameters with a shifted bias term.

Therefore, for 𝛾∗
1
, 𝛾∗

2
to be optimal, the following inequality must

3
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be satisfied [6],

1

𝛾∗
1

√
𝑛1

+ 1

𝛾∗
2

√
𝑛2

≤ 1

(𝛾∗
1
− 𝛿)√𝑛1

+ 1

(𝛾∗
2
+ 𝛿)√𝑛2

, (11)

which implies that

𝛾∗
1
∝ 𝑛−1/4

1
, and 𝛾∗

2
∝ 𝑛−1/4

2
. (12)

Given the trade-off above, we can define our margin loss as

L(𝑢) =max{0, max

𝑦𝑣′≠𝑦𝑢
𝑔(𝑢, 𝑣 ′) − min

𝑦𝑣=𝑦𝑢
𝑔(𝑢, 𝑣) + Δ𝑦𝑢 },

where Δ𝑦𝑢 =
𝐶

𝑛
1/4
𝑦𝑢

.
(13)

Here 𝐶 is a constant hyper-parameter. When applying the above

loss function on real-world graphs, it is impossible to enumerate all

node pairs when calculating the minimum and maximum distances.

Hence we use positive and negative sampling to approximate the

distances. That is, we propose the following margin loss function

in our GAL,

L(𝑢) =E𝑢+∼U𝑢+,𝑢−∼U𝑢− max{0, 𝑔(𝑢,𝑢−) − 𝑔(𝑢,𝑢+) + Δ𝑦𝑢 },

where Δ𝑦𝑢 =
𝐶

𝑛
1/4
𝑦𝑢

.
(14)

Here U𝑢+ denotes the set of user nodes that has the same label as

𝑢,U𝑢− denotes U \U𝑢+, and 𝑛𝑦𝑢 = |U𝑢+ |.

3.3 Estimating the Parameters of GAL

Recall that our task is unsupervised.When applying the distribution-

aware anomaly margin loss (Eq. 14), we are not aware of the label

for each user node 𝑢 ∈ U during the training process. Therefore,

we utilize the results of existing unsupervised graph-based outlier

detection [3, 30] and dense blocks detection [20, 23] algorithms to

estimate the user node setsU𝑢+ andU𝑢− for each user node 𝑢. We

call GAL utilizing the results of these algorithms respectively as

GAL with graph outlier loss and GAL with dense block loss.

3.3.1 Graph outlier detection algorithms.

Given a graph, they assign binary labels to nodes in an unsupervised

way. We use U𝑜 and U𝑛 to denote the set of outlier nodes and the

set of normal nodes, respectively. Here are the three categories of

the algorithms:

• Feature-based graph outlier detection. These methods define the

outlierness score of node 𝑢 based on a pair of its particular features

𝑎𝑢 and 𝑏𝑢 [2, 23]:

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑛𝑒𝑠𝑠 (𝑢) = |𝑏𝑢 − ˆ𝑏𝑢 | or
max(𝑏𝑢 , ˆ𝑏𝑢 )
min(𝑏𝑢 , ˆ𝑏𝑢 )

· log( |𝑏𝑢 − ˆ𝑏𝑢 | +1), (15)

where
ˆ𝑏𝑢 is the predicted feature value based on the observed 𝑎𝑢 .

Intuitively, the measure is the “distance to fitting line (𝑎, 𝑏).” Akoglu

et al. [2] adopted four basic features such as number of neighbors,

number of edges, total weight, and principal eigenvalue of the

weighted adjacency matrix. Power laws were observed between the

features with a large population of nodes (i.e., 𝑏𝑢 ∝ 𝑎𝑢𝛾 , 𝛾 is a con-

stant). Big distance to the power-law fitting line indicates the role

of graph outlier. Jiang et al. [23] proposed two high-order features:

one is called synchronicity which describes how similar a node’s

neighbors are with each other in the space of basic features (e.g.,

degree, PageRank); the other is called normality that describes how

similar the neighbor nodes are with every node in the space. They

found the synchronicity had a parabolic lower limit of the normality

(i.e., 𝑠𝑦𝑛𝑐𝑢 ∝ 𝛼 · 𝑛𝑜𝑟𝑚𝑢2 + 𝛽 , 𝛼 and 𝛽 are constants) and designed

an outlierness scoring function to catch the suspicious nodes. Big

synchronicity and small normality indicate suspiciousness.

• Structure-based graph outlier detection. These methods define

the outlierness score using the graph structure. They assume that

the majority of users have low outlierness score. Then users with

high outlierness scores can be reported as outliers [30]:

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑛𝑒𝑠𝑠 (𝑢) = 1 −
∑

𝑣∈NV (𝑢) �̂� (𝑢,𝑣)+𝛼1 ·𝜇𝑓 +𝛼2 ·
∏

𝑈 (𝑢)
|NV (𝑢) |+𝛼1+𝛼2 , (16)

where 𝑅(𝑢, 𝑣) is the normality score of the rating from 𝑢 to item 𝑣 ,

𝜇𝑓 is the prior belief of 𝑢’s normality score given by BirdNest [19].∏
𝑈 (𝑢) is 𝑢’s behavior normality score. 𝛼1 and 𝛼2 are constants.

• Model-based graph outlier detection. The idea behind these

methods is that the majority of the graph, or say, the structural

dependency can be learned by a specific graph model (e.g., compres-

sion model, generative model) and the outliers deviate significantly

from the model [7, 11].

GAL with graph outlier loss. The graph outlier loss function

encourages the pairs of positive nodes (outliers) to have similar

representations and encourages the pairs of negative nodes (i.e.,

normal nodes) to have similar representations. It enforces that the

representations of pairs of positive and negative nodes are highly

distinct. Therefore, when sampling for each user node 𝑢 ∈ U in

the loss function (Eq 14), we let

U𝑢+ =

{
U𝑛 , if 𝑢 ∈ U𝑛

U𝑜 , if 𝑢 ∈ U𝑜

,U𝑢− =

{
U𝑜 , if 𝑢 ∈ U𝑛

U𝑛 , if 𝑢 ∈ U𝑜

. (17)

3.3.2 Density-based graph anomaly detection algorithms.

These algorithms defined a measurement on how suspicious a

subgraph is with respect to the size and high density in a large

graph, then employed an efficient algorithm scheme (e.g., greedy

search) to detect the subgraphs of high suspiciousness. Suppose

the detection algorithm finds 𝐵 dense subgraphs (i.e., “blocks”)

{B𝑖 = (U𝑏,𝑖 ⊆ U,V𝑖 ⊆ V)}𝐵
𝑖=1

, where U𝑏,𝑖 and V𝑖 denote the set
of user nodes and item nodes in block B𝑖 , respectively. U𝑛 =

U \ ∪𝐵
𝑖=1

U𝑏,𝑖 denotes the set of normal nodes that have never

participated in dense blocks. For block B𝑖 , we denote the size by
𝑛𝑖 = |U𝑏,𝑖 | and𝑚𝑖 = |V𝑖 |; we denote the number of ratings in the

block by 𝑐𝑖 = |{𝑟𝑢,𝑣 > 0|𝑢 ∈ U𝑏,𝑖 , 𝑣 ∈ V𝑖 }|. The suspiciousness
score is defined in different ways in different approaches:

• Average Degree (AD) [4, 5]: 𝑠𝑢𝑠𝑝𝐴𝐷 (B𝑖 ) = 𝑐𝑖
𝑛𝑖
;

• Singular Value (SV) [35, 38]: 𝑠𝑢𝑠𝑝𝑆𝑉 (B𝑖 ) = 𝑐𝑖√
𝑛𝑖 ·𝑚𝑖

;

• Kullback–Leibler divergence of Density (KL) [22]:

𝑠𝑢𝑠𝑝𝐾𝐿 (B𝑖 ) = 𝑛𝑖 ·𝑚𝑖 · 𝐷𝐾𝐿 (𝜌𝑖 ∥ 𝑝); (18)

where 𝜌𝑖 =
𝑐𝑖

𝑛𝑖 ·𝑚𝑖
is the block density, 𝑝 =

| {𝑟𝑢,𝑣>0 |𝑢∈U,𝑣∈V} |
|U | · |V | is

the data density, and 𝐷𝐾𝐿 (𝜌𝑖 ∥ 𝑝) = 𝑝 − 𝜌 + 𝜌 log 𝜌𝑝 is the KL

divergence between 𝜌𝑖 and 𝑝 .

GAL with dense block loss. Suspicious user nodes may perform

in multiple blocks. So the graph density loss should be designed

4
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based on the following assumptions: (i) user node pairs in the same

dense block have similar representations; (ii) pairs of normal nodes

have similar representations; (iii) for each suspicious user 𝑢, the

representations of normal nodes and the nodes in blocks that do

not include 𝑢 are dissimilar with 𝑢’s representation.

Therefore, considering the possibility of one user occurring in

multiple dense blocks, when sampling for each user node 𝑢 ∈ U in

the loss function (Eq 14), we have

U𝑢+ =

{
U𝑛 , if 𝑢 ∈ U𝑛⋃𝐵
𝑖=1,𝑢∈U𝑏,𝑖

U𝑏,𝑖 , if 𝑢 ∉ U𝑛
, (19)

U𝑢− =

{⋃𝐵
𝑖=1U𝑏,𝑖 , if 𝑢 ∈ U𝑛

U \⋃𝐵
𝑖=1,𝑢∈U𝑏,𝑖

U𝑏,𝑖 , if 𝑢 ∉ U𝑛
. (20)

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets.

Weevaluate our proposedGALwith two real-world datasets:Bitcoin-

Alpha is a trust network of Bitcoin trading users on the Alpha

platform [31], where each edge indicates a rating from one user

to another with a rating score. Tencent-Weibo is a user-posts-

hashtag graph from a micro-blogging platform [21].

4.1.2 Baseline methods and GAL variants.

Unsupervised dense block detection methods.

• Fraudar [20]: it catches suspicious dense subgraphs with theo-

retical bounded densities for camouflage;

• CatchSync [23]: it captures the synchronized behavior patterns

in rating networks and social networks;

• LockInfer [24]: it uses singular vectors of adjacency matrix to

find anomalous groups of users in spectral subspaces.

Unsupervised graph outlier detection methods.

• Fraudar_r: it is the reverse of Fraudar. We use Fraudar to

detect first several dense blocks until the remaining density is very

low and report the remaining users as outliers;

• LockInfer_r: it is the reverse of LockInfer. We use LockInfer

to detect all user groups in spectral subspace and report users that

are not contained in any group as outliers;

• DBSCAN [29]: it groups together points that are close in space

and then finds the outliers that lie alone in low-density regions;

• FraudEagle [1]: it uses a belief propagation-based algorithm to

give a fraud score to each user. Outlying users who behaves more

different than the majority are given higher fraud scores;

• BirdNest [19]: it ranks users by a Bayesian model with the users’

rating timestamps and rating score distribution;

• REV2 [30]: it uses an iterative algorithm to find unfair users whose

behaviors can be considered outlier compared with the majority.

Unsupervised graph embedding methods.

• Node2Vec [13]: it uses biased random walks to capture the ho-

mophily and local structure information of the network. Hyperpa-

rameters 𝑝, 𝑞 ∈ {0.25, 0.5, 1, 2, 4} control the search bias;

• LINE [40]: it uses 1st order and 2nd order proximity to capture

the local and 2-hop structure of the network via edge sampling;

• BiNE [12]: it learns the representations of vertices in a bipar-

tite network. Biased random walks are conducted to preserve the

long-tail distribution of vertices.

Unsupervised GNN methods.

• GCN [26]: it is a spectral-based GNN that learns node embed-

dings via a localized first-order approximation of spectral graph

convolutions. It uses a unsupervised RW-based loss function;

• GraphSAGE [14]: it is a GNN that enables specifying different

weights to different nodes in a neighborhood. It uses a unsupervised

RW-based loss function;

• GAT [41]: it is a GNN that learns node embeddings inductively

from its own feature and the aggregated features of its neighbors.

It uses a unsupervised RW-based loss function;

• DeepFD [43]: it is a encoder-decoder structured deep neural net-

work model for fraud detection. It learns user embeddings by mini-

mizing the difference of pairwise distance between user embeddings

and a modified Jaccard similarity;

• Dominant [10]: it is a graph auto-encoder based deep neural

network model for graph anomaly detection. It reconstructs the

graph structure and node attributes to find the anomaly nodes.

In summary, we will compare among 17 methods, including 3

dense block detection methods, 6 graph outlier detection methods,

3 graph embedding methods, and 5 unsupervised GNN methods.

We also compare GAL itself among 10 variants: 3 with density

losses (+Fraudar, +CatchSync, +LockInfer), 5 with outlier losses

(+Fraudar_r, +LockInfer_r, +FraudEagle, +BirdNest, +REV2).

4.2 Results on Bitcoin-Alpha

Table 1 presents the performance of ourGALwith different anomaly

losses and all baselines for the task of anomaly detection on the

Bitcoin-Alpha dataset.

• The suspicious behaviors on Bitcoin-Alpha are more likely to form

outliers than dense subgraphs.Most of the graph outlier detection

methods perform better than dense subgraph detection methods.

For example, Fraudar_r achieved an F1 of 0.6733, while Catch-

Sync had an F1 of 0.5616.

• Graph representation learning models, including GNNs, combine

both node feature and graph structural information, but the improve-

ment by those with RW-based loss is not significant. For example,

Node2Vec achieved an F1 of 0.6977 and Fraudar_r achieved an F1

of 0.6733. The reason is that the outlier’s local neighbors may not

be outliers. DeepFD only obtained an F1 of 0.5479, because it relied

heavily on the Jaccard similarity to optimize node embeddings, but

the Jaccard similarity only used neighbor’s information.

• GNNs trained by our GAL, graph outlier losses, outperform all base-

line methods. GAL-Fraudar_r achieved the best performance: an

F1 of 0.7568, an AP of 0.8221, and an AUC of 0.8556. It outperformed

GCN relatively by +8.1% and +14.6% on the two metrics. And it

outperforms the best anomaly detection method Fraudar_r rela-

tively by +12.4% and +11.7%. GAL with graph outlier losses can

train the GNNs more effectively.

4.3 Results on Tencent-Weibo

Table 2 presents the performances on Tencent-Weibo dataset. Since

the labels are seriously biased, F1 is more representative than AUC.

BirdNest could not work due to the absence of timestamps.
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Table 1: GNNs with graph outlier losses perform the best on

Bitcoin-Alpha data.

Precision Recall F1 AUC

Graph outlier detection algorithms

DBSCAN [29] 0.3879 1.0000 0.5589 0.5016

Fraudar_r 0.5714 0.8193 0.6733 0.7659

LockInfer_r 0.5512 0.8434 0.6667 0.7593

FraudEagle [1] 0.4205 0.8916 0.5714 0.5149

BirdNest [19] 0.3971 1.0000 0.5685 0.3756

REV2 [30] 0.6471 0.6627 0.6548 0.7094

Raw node features

MLP 0.8667 0.5652 0.6842 0.7239

Graph embedding methods

Node2Vec [13] 0.6522 0.7500 0.6977 0.7606

LINE [40] 0.4722 0.8500 0.6071 0.6455

BiNE [12] 0.5143 0.9000 0.6545 0.7409

Graph neural network methods (GNNs)

GCN [26] 0.5526 0.9545 0.7000 0.7463

GraphSAGE [14] 0.6471 0.6111 0.6286 0.7238

GAT [41] 0.6071 0.7727 0.6800 0.7199

DeepFD [43] 0.3774 1.0000 0.5479 0.4652

Dominant [10] 0.4231 1.0000 0.5946 0.3966

GraphSAGE + dense block losses (GAL)

+Fraudar 0.7000 0.7368 0.7179 0.8282

+CatchSync 0.7895 0.6818 0.7317 0.7742

+LockInfer 0.7143 0.7500 0.7317 0.7970

GraphSAGE + graph outlier losses (GAL)

+Fraudar_r 0.7368 0.7778 0.7568 0.8556

+LockInfer_r 0.6800 0.7727 0.7234 0.7874

+FraudEagle 0.9231 0.6000 0.7273 0.8303

+BirdNest 0.7368 0.6364 0.6829 0.7683

+REV2 0.7500 0.7500 0.7500 0.8030

Other GNNs + Fraudar_r (GAL)

GCN+GAL 0.7143 0.7895 0.7500 0.8498

GAT+GAL 0.6333 0.8636 0.7308 0.7273

• The suspicious behaviors on Tencent-Weibo are more likely to form

dense subgraphs than outliers. Dense subgraph detection methods

perform much better than outlier detection methods. Fraudar

achieved an F1 of 0.7540, while FraudEagle only made an F1 of

0.4102. The reason is that fraudsters had to post a large number of

messages in group to inflate popularity of hashtag.

• Local neighborhood is more informative than pure global structure,

as graph embedding models perform better than the dense subgraph

detection algorithms. For example, LINE achieved an F1 of 0.8105,

while Fraudar achieved an F1 of 0.7540. The models that use lo-

cal structures for embedding aggregation can preserve the user

similarity of being in the same blocks.

•GNNs trained by ourGAL, dense block losses, outperform all baseline

methods.GAL-LockInfer performed the best: an F1 of 0.9042 and an

AUC of 0.9843. It outperformed the best graph embedding method

LINE relatively by +11.6% and +4.4% on the two metrics. And it

Table 2: GNNs with dense block losses perform the best on

Tencent-Weibo data.

Precision Recall F1 AUC

Dense block detection algorithms

Fraudar [20] 0.9624 0.6198 0.7540 0.9079

CatchSync [23] 0.3200 0.8111 0.4589 0.7752

LockInfer [24] 0.9318 0.4562 0.6125 0.8674

Raw node features

MLP 0.5105 0.7711 0.6143 0.8907

Graph embedding methods

Node2Vec [13] 0.9111 0.7218 0.8055 0.9642

LINE [40] 0.8675 0.7606 0.8105 0.9432

BiNE [12] 0.3678 0.7007 0.4824 0.8774

Graph neural network mehods (GNNs)

GCN [26] 0.8373 0.8697 0.8532 0.9690

GraphSAGE [14] 0.8200 0.8662 0.8425 0.9780

GAT [41] 0.8586 0.8768 0.8676 0.9706

DeepFD [43] 0.1080 0.9562 0.1941 0.4980

Dominant [10] 0.3006 0.8627 0.4524 0.8167

GraphSAGE + dense block losses (GAL)

+Fraudar 0.8669 0.8944 0.8804 0.9777

+CatchSync 0.9067 0.8556 0.8804 0.9685

+LockInfer 0.9294 0.8803 0.9042 0.9843

GraphSAGE + graph outlier losses (GAL)

+Fraudar_r 0.8547 0.8697 0.8621 0.9697

+LockInfer_r 0.8591 0.8803 0.8696 0.9757

+FraudEagle 0.8581 0.8732 0.8656 0.9730

+BirdNest n/a n/a n/a n/a

+REV2 0.8759 0.8944 0.8850 0.9677

Other GNNs + LockInfer (GAL)

GCN+GAL 0.9459 0.8627 0.9024 0.9853

GAT+GAL 0.9097 0.8873 0.8984 0.9838

outperformed GraphSAGE relatively by +7.3% and +0.6%. GAL

with dense block losses can train the GNN models more effectively.

5 CONCLUSIONS

In this work, we presented a novel Graph Anomaly Losses (GAL)

that is able to unsupervisedly train GNNs for anomaly-detectable

node representations. GAL has a bounded test error and GAL with

graph outlier losses and dense block losses evaluates node similarity

based on the global properties discovered by graph mining algo-

rithms. Experiments on two real-world datasets demonstrated that

(i) GNNs with GAL significantly outperformed 17 baseline methods

and (ii) GAL trained the models more effectively than traditional

RW-based loss on various state-of-the-art GNN frameworks.
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