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Abstract—Artificial intelligence (AI) methods have been widely
applied for accurate network intrusion detection (NID). However,
the developers and users of the NID systems could not understand
the systems’ correct or incorrect decisions due to the complexity
and black-box nature of the AI methods. This is a two-page poster
paper that presents a new demo system that offers a number
of counterfactual explanations visually for any data example.
The visualization results were automatically generated: users just
need to provide the index of a data example and do not edit
anything on the graph. In the future, we will extend the detection
task from binary classification to multi-class classification.

Index Terms—network security, intrusion detection, explain-
able artificial intelligence, demo system

I. INTRODUCTION

Network intrusion detection (NID) systems are systems that
monitor network traffic for suspicious activity and alert when
such activity is identified [1]. They are deployed at strategic
points within the network, where they can monitor inbound
and outbound traffic to and from all the devices on the network
for the purposes of identifying attacks (intrusions) that passed
through the network firewall.

Network intrusion detection was first introduced to the
commercial market two decades ago as SNORT and quickly
became a key cybersecurity control. In its first incarnation,
NID systems used rules, signatures, and behavior detection
engines to analyze passing traffic and match the traffic to the
library of known attacks.

Last decade the scope of network attackers has changed
significantly. There has been a variety of network attack
types such as malware attacks, phishing emails, malvertising,
worms, web attacks (e.g., SQL injection, path traversal), scan
attacks, brute force attacks, and distributed denial-of-service
(DDoS) attacks. To combat them, we are witnessing a wave of
deep learning and AI technologies for network and application
threat detection like the NSFOCUS Threat Analysis System.
However, due to the black-box nature of the learning models,
both AI developers and system users have to be involved in
the development, deployment, and maintenance.

We use recent advances in explainable AI for NID. We
expect the answer to the explanation of a decision to be given
with respect to alternatives or specific unselected outcomes:
“For situation X , why was the outcome Y and not Z?” A use-
ful technique for providing such discriminative explanations is

Fig. 1. Two counterfactual examples are labelled and compared with the
query data example to explain the predicted label of a neural network binary
classifier. The visual feature space was built by the t-SNE dimension reduction
technique. The query examples are “attack” (positive) and “benign” (negative)
in the top and bottom subfigures, respectively. The zoomed images shows what
minimal feature changes would flip the model’s binary decisions.

the counterfactual, i.e., describing what changes to the situa-
tion would have resulted in arriving at the alternative decision:
“If the situation was X ′, then the outcome would have been
Z rather than Y .” [2] As intrusion detection systems achieve
increasingly widespread networks, the need of the explanations
to the systems’ decisions is growing rapidly. Our idea is to
find counterfactual examples on the continuous features: how
to modify a feature’s value to alter the decision of detecting
the type of network intrusion and how to make sure the



modification is practical. In this project we develop a system
for explainable NID that creates counterfactual examples by
modifying the values of a small set of features. Our system
automatically generates visualizations of the explanations.

II. COUNTERFACUTAL EXPLANATIONS

Suppose we have a training dataset {xi, yi} where xi has a
set of attributes of the i-th example and yi is its class label.
A neural network model fΘ was trained on a loss function l:

min
Θ

l(fΘ(xi), yi) + ρ(Θ), (1)

where Θ are model parameters and ρ is a regularizer on Θ.
Counterfactual explanations can be generated to explain the

decisions of the models by identifying what feature values
would need to change to produce a specified output [3]. Given
the classifier fΘ and a query example xi, we look for a
counterfactual example x′ as close to xi as possible such that
fΘ(x

′) is equal to a new target label y′ ̸= yi. We can find x′

by holding Θ fixed and minimizing the related objective:

min
x′

max
λ

λ · l(fΘ(x′), y′)
2
+ d(xi, x

′), (2)

where d is a distance metric that measures how far the
counterfactual x′ and query xi are. In practice, maximization
over λ is done by iteratively solving for x′ and increasing
λ until a sufficiently close solution is found. We use Adam
optimizers for first-order gradient-based optimization of the
stochastic objective function. As local minima are a concern,
we initialize each run with different random values for x′ and
select as our counterfactual the best minimizer of the Eq.(2).
In practice, λ = 1 could produce satisfied counterfactual
explanations in most cases. We use the random search and
change at least two features each time to find a suitable x′.

III. SYSTEM DESIGN AND DEVELOPMENT

This demo system is not supposed to work independently. It
serves for any AI-informed NID system which contains a NID
dataset and a (deep) neural network model that was trained
on the dataset to predict the class of data examples such as
Benign, Reconnaissance, DDoS, DoS, Theft, and many other
types of attacks. So far it has been able to process binary
decisions including Benign (negative) and Attack (positive).

The system has three components. The first component is a
counterfactual explanation algorithm as in the previous section.
The input includes a query example in the NID dataset and
the number of counterfactual explanations k. The output is the
counterfactual data examples from the dataset.

The second component is the t-Distributed Stochastic
Neighbor Embedding (t-SNE). It is a dimensionality reduction
technique that transforms the high-dimensional NID dataset
into a two-dimensional space so that we can visualize it.

The third component is a visualization tool. It plots different
types of data examples into the two-dimensional space, blue
for Benign and orange for Attack. In the space, it highlights
the query and counterfactual examples (+, ◁, ▷). Then it
provides k (usually two) zoomed images to show the distance
between the query and each counterfactual in the space as well

as the minimal feature change needed from one to the other
to flip the classifier’s decision. This indicates why the neural
model made such a prediction from the perspective of feature
values.

IV. RESULTS

We use two series of datasets [4]. One is based on NetFlow,
a de-facto industry standard developed in 1996 [5]. It includes
NF-BoT, NF-ToN, NF-IDS18, and NF-UQ. The other uses
the CICFlowMeter tool to extract time-based features from
the BoT and ToN datasets (CIC-BoT and CIC-ToN). All the
datasets have more than five million examples. Their numerical
attributes include timestamp, flow duration, IN BYTES and
OUT PKTS (i.e., how many bytes/packets came in/out to the
destination IP and port), and many others.

Figure 1 presents the output of two specific examples from
the explainable AI-based NID system, given the NF-BoT
dataset where the Benign set is much smaller than the Attack.
We observe the irregular distribution of Benign (blue) and
Attack (orange) examples from the top subfigure. The query
example is an “Attack” and we can see that the two counterfac-
tuals (of minimal change of original features and of the Benign
label) are right at the boundary between the two classes.
The features OUT BYTES and OUT PKTS were selected for
minimal changes to generate the two counterfactuals. In the
bottom subfigure, the counterfactuals select different sets of
the features such as PROTOCOL and TCG FLAGS.

V. CONCLUSIONS AND FUTURE WORK

We presented a new demo system that automatically finds
a number of counterfactual examples from a neural network
binary classifier and visually presents their relationship with a
given query example. Therefore, this system was able to pro-
vide explanations for the AI decisions which were missing in
the existing AI-informed network intrusion detection systems.

In the future, we will extend the detection task from binary
classification to multi-class classification. The system will be
able to explain the identification of different types of attacks
from the neural network models.
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